0
|
1 |
// Copyright (c) 1994-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
2 |
// All rights reserved.
|
|
3 |
// This component and the accompanying materials are made available
|
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
|
5 |
// which accompanies this distribution, and is available
|
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
7 |
//
|
|
8 |
// Initial Contributors:
|
|
9 |
// Nokia Corporation - initial contribution.
|
|
10 |
//
|
|
11 |
// Contributors:
|
|
12 |
//
|
|
13 |
// Description:
|
|
14 |
// template\template_variant\specific\power.cpp
|
|
15 |
// Template Power Management
|
|
16 |
// (see also variant.cpp for a discussion on Sleep modes and xyin.cpp for example
|
|
17 |
// of usage of Resource Manager and Peripheral self power down and interaction
|
|
18 |
// with Power Controller for Wakeup Events)
|
|
19 |
//
|
|
20 |
//
|
|
21 |
|
|
22 |
#include "template_power.h"
|
|
23 |
|
|
24 |
static TemplateResourceManager TheResourceManager;
|
|
25 |
|
|
26 |
DTemplatePowerController* TTemplatePowerController::iPowerController;
|
|
27 |
|
|
28 |
|
|
29 |
//-/-/-/-/-/-/-/-/-/ class DTemplatePowerController /-/-/-/-/-/-/-/-/-/
|
|
30 |
|
|
31 |
DTemplatePowerController::DTemplatePowerController()
|
|
32 |
{
|
|
33 |
Register(); // register Power Controller with Power Manager
|
|
34 |
TTemplatePowerController::RegisterPowerController(this);
|
|
35 |
}
|
|
36 |
|
|
37 |
void DTemplatePowerController::CpuIdle()
|
|
38 |
{
|
|
39 |
Arch::TheAsic()->Idle();
|
|
40 |
}
|
|
41 |
|
|
42 |
void DTemplatePowerController::EnableWakeupEvents()
|
|
43 |
{
|
|
44 |
//
|
|
45 |
// TO DO: (mandatory)
|
|
46 |
//
|
|
47 |
// Enable tracking of wake-up events directly in hardware. If the hardware is controlled by a Driver
|
|
48 |
// or Extension, may need to disable interrupts and preemption around the code that accesses the hardware
|
|
49 |
// and set up a flag which the Driver/Extension code need to read before modifying the state of that piece
|
|
50 |
// of hardware. Note in that case the Driver/Extension may need to link to this Library.
|
|
51 |
//
|
|
52 |
|
|
53 |
//
|
|
54 |
// EXAMPLE ONLY
|
|
55 |
// In this example we simply assume that the driver will call the Power Controller every time a
|
|
56 |
// wakeup event occurr. It is up to the Power Controller to know if it is tracking them or not.
|
|
57 |
// We also assume that if a wakeup event occurrs when the CPU is in Standby, this will automatically
|
|
58 |
// bring it back from that state.
|
|
59 |
iWakeupEventsOn = ETrue; // start tracking wakeup events
|
|
60 |
}
|
|
61 |
|
|
62 |
void DTemplatePowerController::DisableWakeupEvents()
|
|
63 |
{
|
|
64 |
//
|
|
65 |
// TO DO: (mandatory)
|
|
66 |
//
|
|
67 |
// Disable tracking of wake-up events directly in hardware or if the hardware is controlled by a Driver or
|
|
68 |
// Extension need to set up a flag which the Driver/Extension reads whenever the event occurs, in order to
|
|
69 |
// find out if it needs to deliver notification to the Power Controller
|
|
70 |
//
|
|
71 |
iWakeupEventsOn = EFalse; // stop tracking wakeup events
|
|
72 |
}
|
|
73 |
|
|
74 |
void DTemplatePowerController::AbsoluteTimerExpired()
|
|
75 |
{
|
|
76 |
if (iTargetState == EPwStandby && iWakeupEventsOn)
|
|
77 |
{
|
|
78 |
iWakeupEventsOn = EFalse; // one occurred, no longer track wakeup events
|
|
79 |
WakeupEvent();
|
|
80 |
}
|
|
81 |
}
|
|
82 |
|
|
83 |
void DTemplatePowerController::PowerDown(TTimeK aWakeupST)
|
|
84 |
{
|
|
85 |
if (iTargetState == EPwStandby)
|
|
86 |
{
|
|
87 |
//
|
|
88 |
// TO DO: (mandatory)
|
|
89 |
//
|
|
90 |
// Converts between the Wakeup time in System Time units as passed in to this function and a Wakeup
|
|
91 |
// time in RTC units. The following code is given as an example how to convert between System time units
|
|
92 |
// RTC time units on a system with a 32 bit RTC timer and which is incremented on a second interval:
|
|
93 |
//
|
|
94 |
TUint32 wakeupRTC;
|
|
95 |
if (aWakeupST)
|
|
96 |
{
|
|
97 |
TUint32 nowRTC = TTemplate::RtcData();
|
|
98 |
TTimeK nowST = Kern::SystemTime();
|
|
99 |
__KTRACE_OPT(KPOWER,Kern::Printf("system time: now = 0x%lx(us) wakeup = 0x%lx(us)", nowST, aWakeupST));
|
|
100 |
if (aWakeupST < nowST)
|
|
101 |
return;
|
|
102 |
Int64 deltaSecs = (aWakeupST - nowST) / 1000000;
|
|
103 |
if (deltaSecs <= 0)
|
|
104 |
return;
|
|
105 |
if (deltaSecs + (Int64)nowRTC > (Int64)(KMaxTInt - 2))
|
|
106 |
wakeupRTC = (KMaxTInt - 2); // RTC can't wrap around during standby
|
|
107 |
else
|
|
108 |
wakeupRTC = nowRTC + deltaSecs;
|
|
109 |
__KTRACE_OPT(KPOWER,Kern::Printf("RTC: now = %d(s) wakeup = %d(s)", nowRTC, wakeupRTC));
|
|
110 |
}
|
|
111 |
else
|
|
112 |
wakeupRTC = 0;
|
|
113 |
//
|
|
114 |
// TO DO: (optional)
|
|
115 |
//
|
|
116 |
// It then uses the calculated value to program the RTC to wakeup the System at the Wakeup
|
|
117 |
// time ans sets the CPU and remaining hardware to go to the correponding low power mode. When the
|
|
118 |
// state of the Core and Core Peripherals is not preserved in this mode the following is usually
|
|
119 |
// required:
|
|
120 |
// - save current Core state (current Mode, banked registers for each Mode and Stack Pointer for
|
|
121 |
// both current and User Modes
|
|
122 |
// - save MMU state: Control Register, TTB and Domain Access Control
|
|
123 |
// - Flush Dta Cache and drain Write Buffer
|
|
124 |
// - save Core Peripherals state: Interrupt Controller, Pin Function, Bus State and Clock settings
|
|
125 |
// SDRAM should be put in self refresh mode. Peripheral devices involved in detection of Wakeup events
|
|
126 |
// should be left powered.
|
|
127 |
// The Tick timer should be disabled and the current count of this and other System timers shall be
|
|
128 |
// saved.
|
|
129 |
// On wakeing up the state should be restored from the save state as above. SDRAM shall be brought back
|
|
130 |
// under CPU control, The Tick count shall be restored and timers re-enabled.
|
|
131 |
|
|
132 |
// We assume that if a wakeup event occurrs when the CPU is in Standby, this will automatically
|
|
133 |
// bring it back from that state. Therefore we stop tracking wakeup events as the Power Manager will
|
|
134 |
// complete any pending notifications anyway. When the driver delivers its notification, we just ignore
|
|
135 |
// it.
|
|
136 |
iWakeupEventsOn = EFalse; // tracking of wakeup events is now done in hardware
|
|
137 |
}
|
|
138 |
else
|
|
139 |
{
|
|
140 |
Kern::Restart(0x80000000);
|
|
141 |
}
|
|
142 |
}
|
|
143 |
|
|
144 |
//-/-/-/-/-/-/-/-/-/ class TTemplatePowerController /-/-/-/-/-/-/-/-/-/
|
|
145 |
|
|
146 |
EXPORT_C TemplateResourceManager* TTemplatePowerController::ResourceManager()
|
|
147 |
{
|
|
148 |
return &TheResourceManager;
|
|
149 |
}
|
|
150 |
|
|
151 |
|
|
152 |
EXPORT_C void TTemplatePowerController::WakeupEvent()
|
|
153 |
{
|
|
154 |
if(!iPowerController)
|
|
155 |
__PM_PANIC("Power Controller not present");
|
|
156 |
else if(iPowerController->iWakeupEventsOn)
|
|
157 |
{
|
|
158 |
iPowerController->iWakeupEventsOn=EFalse; // one occurred, no longer track wakeup events
|
|
159 |
iPowerController->WakeupEvent();
|
|
160 |
}
|
|
161 |
}
|
|
162 |
|
|
163 |
//-/-/-/-/-/-/-/-/-/ class TemplateResourceManager /-/-/-/-/-/-/-/-/-/
|
|
164 |
|
|
165 |
void TemplateResourceManager::InitResources()
|
|
166 |
{
|
|
167 |
//
|
|
168 |
// TO DO: (optional)
|
|
169 |
//
|
|
170 |
// Initialise any power resources required by the platform and not initialised in the Bootstrap
|
|
171 |
//
|
|
172 |
}
|
|
173 |
|
|
174 |
//-/-/-/-/-/-/-/-/-/ interface for shared resources /-/-/-/-/-/-/-/-/-/
|
|
175 |
|
|
176 |
void SharedBinaryResource1::Use()
|
|
177 |
{
|
|
178 |
NKern::Lock(); // lock Kernel as shared resource is likely to be modified from different threads
|
|
179 |
if (iCount++ == 0)
|
|
180 |
{
|
|
181 |
//
|
|
182 |
// TO DO: (optional)
|
|
183 |
//
|
|
184 |
// Modify hardware register bit or bits to switch the resource On. If the resource
|
|
185 |
// can be accessed from an ISR need to disable/enable interrupts around it.
|
|
186 |
//
|
|
187 |
NKern::Unlock();
|
|
188 |
//
|
|
189 |
// TO DO: (optional)
|
|
190 |
//
|
|
191 |
// If the resource is asynchronous may need to sleep or block the thread until the change is complete
|
|
192 |
//
|
|
193 |
}
|
|
194 |
else
|
|
195 |
NKern::Unlock();
|
|
196 |
}
|
|
197 |
|
|
198 |
void SharedBinaryResource1::Release()
|
|
199 |
{
|
|
200 |
NKern::Lock();
|
|
201 |
__PM_ASSERT(iCount);
|
|
202 |
if (--iCount == 0)
|
|
203 |
{
|
|
204 |
//
|
|
205 |
// TO DO: (optional)
|
|
206 |
//
|
|
207 |
// Modify hardware register bit or bits to switch the resource Off. If the resource
|
|
208 |
// can be accessed from an ISR need to disable/enable interrupts around it.
|
|
209 |
//
|
|
210 |
NKern::Unlock();
|
|
211 |
//
|
|
212 |
// TO DO: (optional)
|
|
213 |
//
|
|
214 |
// If the resource is asynchronous may need to sleep or block the thread until the change is complete
|
|
215 |
//
|
|
216 |
}
|
|
217 |
else
|
|
218 |
NKern::Unlock();
|
|
219 |
}
|
|
220 |
|
|
221 |
TUint SharedBinaryResource1::GetCount()
|
|
222 |
{
|
|
223 |
return iCount;
|
|
224 |
}
|
|
225 |
|
|
226 |
SharedMultilevelResource1::SharedMultilevelResource1()
|
|
227 |
//
|
|
228 |
// TO DO: (optional)
|
|
229 |
//
|
|
230 |
// May need to initialise current level and the Id of its owner if these have been initialised in the Bootstrap
|
|
231 |
//
|
|
232 |
// : iCurrentLevel(/* a level for this resource as initialised in the Bootstrap */),
|
|
233 |
// iCurrentLevelOwnerId(/* the Id of the requester of this resource that requires the initial value */)
|
|
234 |
{
|
|
235 |
}
|
|
236 |
|
|
237 |
void SharedMultilevelResource1::IncreaseToLevel(TUint aLevel, TInt aRequester)
|
|
238 |
{
|
|
239 |
//
|
|
240 |
// Drivers should use this API if they wish to request a level higher than the previous level they required
|
|
241 |
// Drivers should keep track of the level they require and be disciplined
|
|
242 |
//
|
|
243 |
NKern::Lock();
|
|
244 |
__PM_ASSERT(aLevel<Levels[aRequester]);
|
|
245 |
Levels[aRequester]=aLevel;
|
|
246 |
if(aLevel > iCurrentLevel) // need to increase the level
|
|
247 |
{
|
|
248 |
// if(aLevel <= MAXLEVEL)
|
|
249 |
// aLevel = MAXLEVEL;
|
|
250 |
iCurrentLevel = aLevel;
|
|
251 |
iCurrentLevelOwnerId = aRequester;
|
|
252 |
//
|
|
253 |
// TO DO: (optional)
|
|
254 |
//
|
|
255 |
// Modify hardware register bits to set the level of the resource to aLevel
|
|
256 |
NKern::Unlock();
|
|
257 |
//
|
|
258 |
// TO DO: (optional)
|
|
259 |
//
|
|
260 |
// If the resource is asynchronous may need to sleep or block the thread until the change is complete
|
|
261 |
//
|
|
262 |
}
|
|
263 |
else
|
|
264 |
NKern::Unlock();
|
|
265 |
}
|
|
266 |
|
|
267 |
void SharedMultilevelResource1::ReduceToLevel(TUint aLevel, TInt aRequester)
|
|
268 |
{
|
|
269 |
//
|
|
270 |
// Drivers should use this API if they wish to request a level higher than the previous level they required
|
|
271 |
//
|
|
272 |
NKern::Lock();
|
|
273 |
__PM_ASSERT(aLevel>Levels[aRequester]);
|
|
274 |
|
|
275 |
Levels[aRequester]=aLevel;
|
|
276 |
if(aLevel < iCurrentLevel && aRequester == iCurrentLevelOwnerId) // the holder of the current level as lowered its request
|
|
277 |
{
|
|
278 |
FindMaxLevel(&iCurrentLevel, &iCurrentLevelOwnerId); // find max level required and the ID of its holder
|
|
279 |
//
|
|
280 |
// TO DO: (optional)
|
|
281 |
//
|
|
282 |
// Modify hardware register bits to set the level of the resource to iCurrentLevel
|
|
283 |
NKern::Unlock();
|
|
284 |
//
|
|
285 |
// TO DO: (optional)
|
|
286 |
//
|
|
287 |
// If the resource is asynchronous may need to sleep or block the thread until the change is complete
|
|
288 |
//
|
|
289 |
}
|
|
290 |
else
|
|
291 |
NKern::Unlock();
|
|
292 |
}
|
|
293 |
|
|
294 |
TUint SharedMultilevelResource1::GetResourceLevel()
|
|
295 |
{
|
|
296 |
return iCurrentLevel;
|
|
297 |
}
|
|
298 |
|
|
299 |
void SharedMultilevelResource1::FindMaxLevel(TUint* aLevel, TInt* aId)
|
|
300 |
{
|
|
301 |
//
|
|
302 |
// TO DO: (optional)
|
|
303 |
//
|
|
304 |
// Place your clever array search algorithm here...
|
|
305 |
// return max level and id of owner
|
|
306 |
}
|
|
307 |
|
|
308 |
TInt BinaryPowerInit(); // the Symbian example Battery Monitor and Power HAL handling
|
|
309 |
|
|
310 |
GLDEF_C TInt KernelModuleEntry(TInt aReason)
|
|
311 |
{
|
|
312 |
if(aReason==KModuleEntryReasonVariantInit0)
|
|
313 |
{
|
|
314 |
//
|
|
315 |
// TO DO: (optional)
|
|
316 |
//
|
|
317 |
// Start the Resource Manager earlier so that Variant and other extension could make use of Power Resources
|
|
318 |
//
|
|
319 |
__KTRACE_OPT(KPOWER, Kern::Printf("Starting Template Resource controller"));
|
|
320 |
new(&TheResourceManager)TemplateResourceManager;
|
|
321 |
TheResourceManager.InitResources();
|
|
322 |
return KErrNone;
|
|
323 |
}
|
|
324 |
else if(aReason==KModuleEntryReasonExtensionInit0)
|
|
325 |
{
|
|
326 |
__KTRACE_OPT(KPOWER, Kern::Printf("Starting Template power controller"));
|
|
327 |
//
|
|
328 |
// TO DO: (optional)
|
|
329 |
//
|
|
330 |
// Start the Kernel-side Battery Monitor and hook a Power HAL handling function.
|
|
331 |
// Symbian provides example code for both of the above in \e32\include\driver\binpower.h
|
|
332 |
// You may want to write your own versions.
|
|
333 |
// The call below starts the example Battery Monitor and hooks the example Power HAL handling function
|
|
334 |
// At the end we return an error to make sure that the entry point is not called again with
|
|
335 |
// KModuleEntryReasonExtensionInit1 (which would call the constructor of TheResourceManager again)
|
|
336 |
//
|
|
337 |
TInt r = BinaryPowerInit();
|
|
338 |
if (r!= KErrNone)
|
|
339 |
__PM_PANIC("Can't initialise Binary Power model");
|
|
340 |
DTemplatePowerController* c = new DTemplatePowerController();
|
|
341 |
if(c)
|
|
342 |
return KErrGeneral;
|
|
343 |
else
|
|
344 |
__PM_PANIC("Can't create Power Controller");
|
|
345 |
}
|
|
346 |
else if(aReason==KModuleEntryReasonExtensionInit1)
|
|
347 |
{
|
|
348 |
// does not get called...
|
|
349 |
}
|
|
350 |
return KErrArgument;
|
|
351 |
}
|