0
|
1 |
// Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
2 |
// All rights reserved.
|
|
3 |
// This component and the accompanying materials are made available
|
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
|
5 |
// which accompanies this distribution, and is available
|
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
7 |
//
|
|
8 |
// Initial Contributors:
|
|
9 |
// Nokia Corporation - initial contribution.
|
|
10 |
//
|
|
11 |
// Contributors:
|
|
12 |
//
|
|
13 |
// Description:
|
|
14 |
// e32\euser\epoc\x86\uc_realx.cia
|
|
15 |
//
|
|
16 |
//
|
|
17 |
|
|
18 |
|
|
19 |
#include "u32std.h"
|
|
20 |
#include <e32math.h>
|
|
21 |
|
|
22 |
|
|
23 |
void TRealXPanic(TInt aErr);
|
|
24 |
|
|
25 |
LOCAL_C __NAKED__ void TRealXPanicEax(void)
|
|
26 |
{
|
|
27 |
asm("push eax");
|
|
28 |
asm("call %a0": : "i"(&TRealXPanic));
|
|
29 |
}
|
|
30 |
|
|
31 |
LOCAL_C __NAKED__ void TRealXRealIndefinite(void)
|
|
32 |
{
|
|
33 |
// return 'real indefinite' NaN in ecx,edx:ebx
|
|
34 |
asm("mov ecx, 0xFFFF0001"); // exponent=FFFF, sign negative
|
|
35 |
asm("mov edx, 0xC0000000"); // mantissa=C0000000 00000000
|
|
36 |
asm("xor ebx, ebx");
|
|
37 |
asm("mov eax, -6"); // return KErrArgument
|
|
38 |
asm("ret");
|
|
39 |
}
|
|
40 |
|
|
41 |
LOCAL_C __NAKED__ void TRealXBinOpNaN(void)
|
|
42 |
{
|
|
43 |
// generic routine to process NaN's in binary operations
|
|
44 |
// destination operand in ecx,edx:eax
|
|
45 |
// source operand at [esi]
|
|
46 |
|
|
47 |
asm("mov eax, [esi+8]"); // source operand into eax,edi:ebp
|
|
48 |
asm("mov edi, [esi+4]");
|
|
49 |
asm("mov ebp, [esi]");
|
|
50 |
asm("cmp ecx, 0xFFFF0000"); // check if dest is a NaN
|
|
51 |
asm("jb short TRealXBinOpNaN1"); // if not, swap them
|
|
52 |
asm("cmp edx, 0x80000000");
|
|
53 |
asm("jne short TRealXBinOpNaN2");
|
|
54 |
asm("test ebx, ebx");
|
|
55 |
asm("jne short TRealXBinOpNaN2");
|
|
56 |
asm("TRealXBinOpNaN1:"); // swap the operands
|
|
57 |
asm("xchg ecx, eax");
|
|
58 |
asm("xchg edx, edi");
|
|
59 |
asm("xchg ebx, ebp");
|
|
60 |
asm("TRealXBinOpNaN2:");
|
|
61 |
asm("cmp eax, 0xFFFF0000"); // check if both operands are NaNs
|
|
62 |
asm("jb short TRealXBinOpNaN4"); // if not, ignore non-NaN operand
|
|
63 |
asm("cmp edi, 0x80000000");
|
|
64 |
asm("jne short TRealXBinOpNaN3");
|
|
65 |
asm("test ebp, ebp");
|
|
66 |
asm("je short TRealXBinOpNaN4");
|
|
67 |
asm("TRealXBinOpNaN3:"); // if both operands are NaN's, compare significands
|
|
68 |
asm("cmp edx, edi");
|
|
69 |
asm("ja short TRealXBinOpNaN4");
|
|
70 |
asm("jb short TRealXBinOpNaN5");
|
|
71 |
asm("cmp ebx, ebp");
|
|
72 |
asm("jae short TRealXBinOpNaN4");
|
|
73 |
asm("TRealXBinOpNaN5:"); // come here if dest is smaller - copy source to dest
|
|
74 |
asm("mov ecx, eax");
|
|
75 |
asm("mov edx, edi");
|
|
76 |
asm("mov ebx, ebp");
|
|
77 |
asm("TRealXBinOpNaN4:"); // NaN with larger significand is in ecx,edx:ebx
|
|
78 |
asm("or edx, 0x40000000"); // convert an SNaN to a QNaN
|
|
79 |
asm("mov eax, -6"); // return KErrArgument
|
|
80 |
asm("ret");
|
|
81 |
}
|
|
82 |
|
|
83 |
// Add TRealX at [esi] + ecx,edx:ebx
|
|
84 |
// Result in ecx,edx:ebx
|
|
85 |
// Error code in eax
|
|
86 |
// Note: +0 + +0 = +0, -0 + -0 = -0, +0 + -0 = -0 + +0 = +0,
|
|
87 |
// +/-0 + X = X + +/-0 = X, X + -X = -X + X = +0
|
|
88 |
LOCAL_C __NAKED__ void TRealXAdd()
|
|
89 |
{
|
|
90 |
asm("xor ch, ch"); // clear rounding flags
|
|
91 |
asm("cmp ecx, 0xFFFF0000"); // check if dest=NaN or infinity
|
|
92 |
asm("jnc addfpsd"); // branch if it is
|
|
93 |
asm("mov eax, [esi+8]"); // fetch sign/exponent of source
|
|
94 |
asm("cmp eax, 0xFFFF0000"); // check if source=NaN or infinity
|
|
95 |
asm("jnc addfpss"); // branch if it is
|
|
96 |
asm("cmp eax, 0x10000"); // check if source=0
|
|
97 |
asm("jc addfp0s"); // branch if it is
|
|
98 |
asm("cmp ecx, 0x10000"); // check if dest=0
|
|
99 |
asm("jc addfp0d"); // branch if it is
|
|
100 |
asm("and cl, 1"); // clear bits 1-7 of ecx
|
|
101 |
asm("and al, 1"); // clear bits 1-7 of eax
|
|
102 |
asm("mov ch, cl");
|
|
103 |
asm("xor ch, al"); // xor of signs into ch bit 0
|
|
104 |
asm("add ch, ch");
|
|
105 |
asm("or cl, ch"); // and into cl bit 1
|
|
106 |
asm("or al, ch"); // and al bit 1
|
|
107 |
asm("xor ch, ch"); // clear rounding flags
|
|
108 |
asm("mov ebp, [esi]"); // fetch source mantissa 0-31
|
|
109 |
asm("mov edi, [esi+4]"); // fetch source mantissa 32-63
|
|
110 |
asm("ror ecx, 16"); // dest exponent into cx
|
|
111 |
asm("ror eax, 16"); // source exponent into ax
|
|
112 |
asm("push ecx"); // push dest exponent/sign
|
|
113 |
asm("sub cx, ax"); // cx = dest exponent - source exponent
|
|
114 |
asm("je short addfp3b"); // if equal, no shifting required
|
|
115 |
asm("ja short addfp1"); // branch if dest exponent >= source exponent
|
|
116 |
asm("xchg ebx, ebp"); // make sure edi:ebp contains the mantissa to be shifted
|
|
117 |
asm("xchg edx, edi");
|
|
118 |
asm("xchg eax, [esp]"); // and larger exponent and corresponding sign is on the stack
|
|
119 |
asm("neg cx"); // make cx positive = number of right shifts needed
|
|
120 |
asm("addfp1:");
|
|
121 |
asm("cmp cx, 64"); // if more than 64 shifts needed
|
|
122 |
asm("ja addfp2"); // branch to output larger number
|
|
123 |
asm("jb addfp3"); // branch if <64 shifts
|
|
124 |
asm("mov eax, edi"); // exactly 64 shifts needed - rounding word=mant high
|
|
125 |
asm("test ebp, ebp"); // check bits lost
|
|
126 |
asm("jz short addfp3a");
|
|
127 |
asm("or ch, 1"); // if not all zero, set rounded-down flag
|
|
128 |
asm("addfp3a:");
|
|
129 |
asm("xor edi, edi"); // clear edx:ebx
|
|
130 |
asm("xor ebp, ebp");
|
|
131 |
asm("jmp short addfp5"); // finished shifting
|
|
132 |
asm("addfp3b:"); // exponents equal
|
|
133 |
asm("xor eax, eax"); // set rounding word=0
|
|
134 |
asm("jmp short addfp5");
|
|
135 |
asm("addfp3:");
|
|
136 |
asm("cmp cl, 32"); // 32 or more shifts needed ?
|
|
137 |
asm("jb short addfp4"); // skip if <32
|
|
138 |
asm("mov eax, ebp"); // rounding word=mant low
|
|
139 |
asm("mov ebp, edi"); // mant low=mant high
|
|
140 |
asm("xor edi, edi"); // mant high=0
|
|
141 |
asm("sub cl, 32"); // reduce count by 32
|
|
142 |
asm("jz short addfp5"); // if now zero, finished shifting
|
|
143 |
asm("shrd edi, eax, cl"); // shift ebp:eax:edi right by cl bits
|
|
144 |
asm("shrd eax, ebp, cl"); //
|
|
145 |
asm("shr ebp, cl"); //
|
|
146 |
asm("test edi, edi"); // check bits lost in shift
|
|
147 |
asm("jz short addfp5"); // if all zero, finished
|
|
148 |
asm("or ch, 1"); // else set rounded-down flag
|
|
149 |
asm("xor edi, edi"); // clear edx again
|
|
150 |
asm("jmp short addfp5"); // finished shifting
|
|
151 |
asm("addfp4:"); // <32 shifts needed now
|
|
152 |
asm("xor eax, eax"); // clear rounding word initially
|
|
153 |
asm("shrd eax, ebp, cl"); // shift edi:ebp:eax right by cl bits
|
|
154 |
asm("shrd ebp, edi, cl"); //
|
|
155 |
asm("shr edi, cl"); //
|
|
156 |
|
|
157 |
asm("addfp5:");
|
|
158 |
asm("mov [esp+3], ch"); // rounding flag into ch image on stack
|
|
159 |
asm("pop ecx"); // recover sign and exponent into ecx, with rounding flag
|
|
160 |
asm("ror ecx, 16"); // into normal position
|
|
161 |
asm("test cl, 2"); // addition or subtraction needed ?
|
|
162 |
asm("jnz short subfp1"); // branch if subtraction
|
|
163 |
asm("add ebx,ebp"); // addition required - add mantissas
|
|
164 |
asm("adc edx,edi"); //
|
|
165 |
asm("jnc short roundfp"); // branch if no carry
|
|
166 |
asm("rcr edx,1"); // shift carry right into mantissa
|
|
167 |
asm("rcr ebx,1"); //
|
|
168 |
asm("rcr eax,1"); // and into rounding word
|
|
169 |
asm("jnc short addfp5a");
|
|
170 |
asm("or ch, 1"); // if 1 shifted out, set rounded-down flag
|
|
171 |
asm("addfp5a:");
|
|
172 |
asm("add ecx, 0x10000"); // and increment exponent
|
|
173 |
|
|
174 |
// perform rounding based on rounding word in eax and rounding flag in ch
|
|
175 |
asm("roundfp:");
|
|
176 |
asm("cmp eax, 0x80000000");
|
|
177 |
asm("jc roundfp0"); // if rounding word<80000000, round down
|
|
178 |
asm("ja roundfp1"); // if >80000000, round up
|
|
179 |
asm("test ch, 1");
|
|
180 |
asm("jnz short roundfp1"); // if rounded-down flag set, round up
|
|
181 |
asm("test ch, 2");
|
|
182 |
asm("jnz short roundfp0"); // if rounded-up flag set, round down
|
|
183 |
asm("test bl, 1"); // else test mantissa lsb
|
|
184 |
asm("jz short roundfp0"); // round down if 0, up if 1 [round to even]
|
|
185 |
asm("roundfp1:"); // Come here to round up
|
|
186 |
asm("add ebx, 1"); // increment mantissa
|
|
187 |
asm("adc edx,0"); //
|
|
188 |
asm("jnc roundfp1a"); // if no carry OK
|
|
189 |
asm("rcr edx,1"); // else shift carry into mantissa [edx:ebx=0 here]
|
|
190 |
asm("add ecx, 0x10000"); // and increment exponent
|
|
191 |
asm("roundfp1a:");
|
|
192 |
asm("cmp ecx, 0xFFFF0000"); // check for overflow
|
|
193 |
asm("jae short addfpovfw"); // jump if overflow
|
|
194 |
asm("mov ch, 2"); // else set rounded-up flag
|
|
195 |
asm("xor eax, eax"); // return KErrNone
|
|
196 |
asm("ret");
|
|
197 |
|
|
198 |
asm("roundfp0:"); // Come here to round down
|
|
199 |
asm("cmp ecx, 0xFFFF0000"); // check for overflow
|
|
200 |
asm("jae short addfpovfw"); // jump if overflow
|
|
201 |
asm("test eax, eax"); // else check if rounding word zero
|
|
202 |
asm("jz short roundfp0a"); // if so, leave rounding flags as they are
|
|
203 |
asm("mov ch, 1"); // else set rounded-down flag
|
|
204 |
asm("roundfp0a:");
|
|
205 |
asm("xor eax, eax"); // return KErrNone
|
|
206 |
asm("ret");
|
|
207 |
|
|
208 |
asm("addfpovfw:"); // Come here if overflow occurs
|
|
209 |
asm("xor ch, ch"); // clear rounding flags, exponent=FFFF
|
|
210 |
asm("xor ebx, ebx");
|
|
211 |
asm("mov edx, 0x80000000"); // mantissa=80000000 00000000 for infinity
|
|
212 |
asm("mov eax, -9"); // return KErrOverflow
|
|
213 |
asm("ret");
|
|
214 |
|
|
215 |
// exponents differ by more than 64 - output larger number
|
|
216 |
asm("addfp2:");
|
|
217 |
asm("pop ecx"); // recover exponent and sign
|
|
218 |
asm("ror ecx, 16"); // into normal position
|
|
219 |
asm("or ch, 1"); // set rounded-down flag
|
|
220 |
asm("test cl, 2"); // check if signs the same
|
|
221 |
asm("jz addfp2a");
|
|
222 |
asm("xor ch, 3"); // if not, set rounded-up flag
|
|
223 |
asm("addfp2a:");
|
|
224 |
asm("xor eax, eax"); // return KErrNone
|
|
225 |
asm("ret");
|
|
226 |
|
|
227 |
// signs differ, so must subtract mantissas
|
|
228 |
asm("subfp1:");
|
|
229 |
asm("add ch, ch"); // if rounded-down flag set, change it to rounded-up
|
|
230 |
asm("neg eax"); // subtract rounding word from 0
|
|
231 |
asm("sbb ebx, ebp"); // and subtract mantissas with borrow
|
|
232 |
asm("sbb edx, edi"); //
|
|
233 |
asm("jnc short subfp2"); // if no borrow, sign is correct
|
|
234 |
asm("xor cl, 1"); // else change sign of result
|
|
235 |
asm("shr ch, 1"); // change rounding back to rounded-down
|
|
236 |
asm("not eax"); // negate rounding word
|
|
237 |
asm("not ebx"); // and mantissa
|
|
238 |
asm("not edx"); //
|
|
239 |
asm("add eax,1"); // two's complement negation
|
|
240 |
asm("adc ebx,0"); //
|
|
241 |
asm("adc edx,0"); //
|
|
242 |
asm("subfp2:");
|
|
243 |
asm("jnz short subfp3"); // branch if edx non-zero at this point
|
|
244 |
asm("mov edx, ebx"); // else shift ebx into edx
|
|
245 |
asm("or edx, edx"); //
|
|
246 |
asm("jz short subfp4"); // if still zero, branch
|
|
247 |
asm("mov ebx, eax"); // else shift rounding word into ebx
|
|
248 |
asm("xor eax, eax"); // and zero rounding word
|
|
249 |
asm("sub ecx, 0x200000"); // decrease exponent by 32 due to shift
|
|
250 |
asm("jnc short subfp3"); // if no borrow, carry on
|
|
251 |
asm("jmp short subfpundflw"); // if borrow here, underflow
|
|
252 |
asm("subfp4:");
|
|
253 |
asm("mov edx, eax"); // move rounding word into edx
|
|
254 |
asm("or edx, edx"); // is edx still zero ?
|
|
255 |
asm("jz short subfp0"); // if so, result is precisely zero
|
|
256 |
asm("xor ebx, ebx"); // else zero ebx and rounding word
|
|
257 |
asm("xor eax, eax"); //
|
|
258 |
asm("sub ecx, 0x400000"); // and decrease exponent by 64 due to shift
|
|
259 |
asm("jc short subfpundflw"); // if borrow, underflow
|
|
260 |
asm("subfp3:");
|
|
261 |
asm("mov edi, ecx"); // preserve sign and exponent
|
|
262 |
asm("bsr ecx, edx"); // position of most significant 1 into ecx
|
|
263 |
asm("neg ecx"); //
|
|
264 |
asm("add ecx, 31"); // cl = 31-position of MS 1 = number of shifts to normalise
|
|
265 |
asm("shld edx, ebx, cl"); // shift edx:ebx:eax left by cl bits
|
|
266 |
asm("shld ebx, eax, cl"); //
|
|
267 |
asm("shl eax, cl"); //
|
|
268 |
asm("mov ebp, ecx"); // bit count into ebp for subtraction
|
|
269 |
asm("shl ebp, 16"); // shift left by 16 to align with exponent
|
|
270 |
asm("mov ecx, edi"); // exponent, sign, rounding flags back into ecx
|
|
271 |
asm("sub ecx, ebp"); // subtract shift count from exponent
|
|
272 |
asm("jc short subfpundflw"); // if borrow, underflow
|
|
273 |
asm("cmp ecx, 0x10000"); // check if exponent 0
|
|
274 |
asm("jnc roundfp"); // if not, jump to round result, else underflow
|
|
275 |
|
|
276 |
// come here if underflow
|
|
277 |
asm("subfpundflw:");
|
|
278 |
asm("and ecx, 1"); // set exponent to zero, leave sign
|
|
279 |
asm("xor edx, edx");
|
|
280 |
asm("xor ebx, ebx");
|
|
281 |
asm("mov eax, -10"); // return KErrUnderflow
|
|
282 |
asm("ret");
|
|
283 |
|
|
284 |
// come here to return zero result
|
|
285 |
asm("subfp0:");
|
|
286 |
asm("xor ecx, ecx"); // set exponent to zero, positive sign
|
|
287 |
asm("xor edx, edx");
|
|
288 |
asm("xor ebx, ebx");
|
|
289 |
asm("addfp0snzd:");
|
|
290 |
asm("xor eax, eax"); // return KErrNone
|
|
291 |
asm("ret");
|
|
292 |
|
|
293 |
// come here if source=0 - eax=source exponent/sign
|
|
294 |
asm("addfp0s:");
|
|
295 |
asm("cmp ecx, 0x10000"); // check if dest=0
|
|
296 |
asm("jnc addfp0snzd"); // if not, return dest unaltered
|
|
297 |
asm("and ecx, eax"); // else both zero, result negative iff both zeros negative
|
|
298 |
asm("and ecx, 1");
|
|
299 |
asm("xor eax, eax"); // return KErrNone
|
|
300 |
asm("ret");
|
|
301 |
|
|
302 |
// come here if dest=0, source nonzero
|
|
303 |
asm("addfp0d:");
|
|
304 |
asm("mov ebx, [esi]"); // return source unaltered
|
|
305 |
asm("mov edx, [esi+4]");
|
|
306 |
asm("mov ecx, [esi+8]");
|
|
307 |
asm("xor eax, eax"); // return KErrNone
|
|
308 |
asm("ret");
|
|
309 |
|
|
310 |
// come here if dest=NaN or infinity
|
|
311 |
asm("addfpsd:");
|
|
312 |
asm("cmp edx, 0x80000000"); // check for infinity
|
|
313 |
_ASM_jn(e,TRealXBinOpNaN) // branch if NaN
|
|
314 |
asm("test ebx, ebx");
|
|
315 |
_ASM_jn(e,TRealXBinOpNaN)
|
|
316 |
asm("mov eax, [esi+8]"); // eax=second operand exponent
|
|
317 |
asm("cmp eax, 0xFFFF0000"); // check second operand for NaN or infinity
|
|
318 |
asm("jae short addfpsd1"); // branch if NaN or infinity
|
|
319 |
asm("addfpsd2:");
|
|
320 |
asm("mov eax, -9"); // else return dest unaltered [infinity] and KErrOverflow
|
|
321 |
asm("ret");
|
|
322 |
asm("addfpsd1:");
|
|
323 |
asm("mov ebp, [esi]"); // source mantissa into edi:ebp
|
|
324 |
asm("mov edi, [esi+4]");
|
|
325 |
asm("cmp edi, 0x80000000"); // check for infinity
|
|
326 |
_ASM_jn(e,TRealXBinOpNaN) // branch if NaN
|
|
327 |
asm("test ebp, ebp");
|
|
328 |
_ASM_jn(e,TRealXBinOpNaN)
|
|
329 |
asm("xor al, cl"); // both operands are infinity - check signs
|
|
330 |
asm("test al, 1");
|
|
331 |
asm("jz short addfpsd2"); // if both the same, return KErrOverflow
|
|
332 |
asm("jmp %a0": : "i"(&TRealXRealIndefinite)); // else return 'real indefinite'
|
|
333 |
|
|
334 |
// come here if source=NaN or infinity, dest finite
|
|
335 |
asm("addfpss:");
|
|
336 |
asm("mov ebp, [esi]"); // source mantissa into edi:ebp
|
|
337 |
asm("mov edi, [esi+4]");
|
|
338 |
asm("cmp edi, 0x80000000"); // check for infinity
|
|
339 |
_ASM_jn(e,TRealXBinOpNaN) // branch if NaN
|
|
340 |
asm("test ebp, ebp");
|
|
341 |
_ASM_jn(e,TRealXBinOpNaN)
|
|
342 |
asm("mov ecx, eax"); // if source=infinity, return source unaltered
|
|
343 |
asm("mov edx, edi");
|
|
344 |
asm("mov ebx, ebp");
|
|
345 |
asm("mov eax, -9"); // return KErrOverflow
|
|
346 |
asm("ret");
|
|
347 |
}
|
|
348 |
|
|
349 |
// Subtract TRealX at [esi] - ecx,edx:ebx
|
|
350 |
// Result in ecx,edx:ebx
|
|
351 |
// Error code in eax
|
|
352 |
LOCAL_C __NAKED__ void TRealXSubtract()
|
|
353 |
{
|
|
354 |
asm("xor cl, 1"); // negate subtrahend
|
|
355 |
asm("jmp %a0": :"i"(&TRealXAdd));
|
|
356 |
}
|
|
357 |
|
|
358 |
// Multiply TRealX at [esi] * ecx,edx:ebx
|
|
359 |
// Result in ecx,edx:ebx
|
|
360 |
// Error code in eax
|
|
361 |
LOCAL_C __NAKED__ void TRealXMultiply()
|
|
362 |
{
|
|
363 |
asm("xor ch, ch"); // clear rounding flags
|
|
364 |
asm("mov eax, [esi+8]"); // fetch sign/exponent of source
|
|
365 |
asm("xor cl, al"); // xor signs
|
|
366 |
asm("cmp ecx, 0xFFFF0000"); // check if dest=NaN or infinity
|
|
367 |
asm("jnc mulfpsd"); // branch if it is
|
|
368 |
asm("cmp eax, 0xFFFF0000"); // check if source=NaN or infinity
|
|
369 |
asm("jnc mulfpss"); // branch if it is
|
|
370 |
asm("cmp eax, 0x10000"); // check if source=0
|
|
371 |
asm("jc mulfp0"); // branch if it is
|
|
372 |
asm("cmp ecx, 0x10000"); // check if dest=0
|
|
373 |
asm("jc mulfp0"); // branch if it is
|
|
374 |
asm("push ecx"); // save result sign
|
|
375 |
asm("shr ecx, 16"); // dest exponent into cx
|
|
376 |
asm("shr eax, 16"); // source exponent into ax
|
|
377 |
asm("add eax, ecx"); // add exponents
|
|
378 |
asm("sub eax, 0x7FFE"); // eax now contains result exponent
|
|
379 |
asm("push eax"); // save it
|
|
380 |
asm("mov edi, edx"); // save dest mantissa high
|
|
381 |
asm("mov eax, ebx"); // dest mantissa low -> eax
|
|
382 |
asm("mul dword ptr [esi]"); // dest mantissa low * source mantissa low -> edx:eax
|
|
383 |
asm("xchg ebx, eax"); // result dword 0 -> ebx, dest mant low -> eax
|
|
384 |
asm("mov ebp, edx"); // result dword 1 -> ebp
|
|
385 |
asm("mul dword ptr [esi+4]"); // dest mant low * src mant high -> edx:eax
|
|
386 |
asm("add ebp, eax"); // add in partial product to dwords 1 and 2
|
|
387 |
asm("adc edx, 0"); //
|
|
388 |
asm("mov ecx, edx"); // result dword 2 -> ecx
|
|
389 |
asm("mov eax, edi"); // dest mant high -> eax
|
|
390 |
asm("mul dword ptr [esi+4]"); // dest mant high * src mant high -> edx:eax
|
|
391 |
asm("add ecx, eax"); // add in partial product to dwords 2, 3
|
|
392 |
asm("adc edx, 0"); //
|
|
393 |
asm("mov eax, edi"); // dest mant high -> eax
|
|
394 |
asm("mov edi, edx"); // result dword 3 -> edi
|
|
395 |
asm("mul dword ptr [esi]"); // dest mant high * src mant low -> edx:eax
|
|
396 |
asm("add ebp, eax"); // add in partial product to dwords 1, 2
|
|
397 |
asm("adc ecx, edx"); //
|
|
398 |
asm("adc edi, 0"); // 128-bit mantissa product is now in edi:ecx:ebp:ebx
|
|
399 |
asm("mov edx, edi"); // top 64 bits into edx:ebx
|
|
400 |
asm("mov edi, ebx");
|
|
401 |
asm("mov ebx, ecx"); // bottom 64 bits now in ebp:edi
|
|
402 |
asm("pop ecx"); // recover exponent
|
|
403 |
asm("js short mulfp1"); // skip if mantissa normalised
|
|
404 |
asm("add edi, edi"); // else shift left [only one shift will be needed]
|
|
405 |
asm("adc ebp, ebp");
|
|
406 |
asm("adc ebx, ebx");
|
|
407 |
asm("adc edx, edx");
|
|
408 |
asm("dec ecx"); // and decrement exponent
|
|
409 |
asm("mulfp1:");
|
|
410 |
asm("cmp ebp, 0x80000000"); // compare bottom 64 bits with 80000000 00000000 for rounding
|
|
411 |
asm("ja short mulfp2"); // branch to round up
|
|
412 |
asm("jb short mulfp3"); // branch to round down
|
|
413 |
asm("test edi, edi");
|
|
414 |
asm("jnz short mulfp2"); // branch to round up
|
|
415 |
asm("test bl, 1"); // if exactly half-way, test LSB of result mantissa
|
|
416 |
asm("jz short mulfp4"); // if LSB=0, round down [round to even]
|
|
417 |
asm("mulfp2:");
|
|
418 |
asm("add ebx, 1"); // round up - increment mantissa
|
|
419 |
asm("adc edx, 0");
|
|
420 |
asm("jnc short mulfp2a");
|
|
421 |
asm("rcr edx, 1");
|
|
422 |
asm("inc ecx");
|
|
423 |
asm("mulfp2a:");
|
|
424 |
asm("mov al, 2"); // set rounded-up flag
|
|
425 |
asm("jmp short mulfp5");
|
|
426 |
asm("mulfp3:"); // round down
|
|
427 |
asm("xor al, al"); // clear rounding flags
|
|
428 |
asm("or ebp, edi"); // check for exact result
|
|
429 |
asm("jz short mulfp5"); // skip if exact
|
|
430 |
asm("mulfp4:"); // come here to round down when we know result inexact
|
|
431 |
asm("mov al, 1"); // else set rounded-down flag
|
|
432 |
asm("mulfp5:"); // final mantissa now in edx:ebx, exponent in ecx
|
|
433 |
asm("cmp ecx, 0xFFFF"); // check for overflow
|
|
434 |
asm("jge short mulfp6"); // branch if overflow
|
|
435 |
asm("cmp ecx, 0"); // check for underflow
|
|
436 |
asm("jle short mulfp7"); // branch if underflow
|
|
437 |
asm("shl ecx, 16"); // else exponent up to top end of ecx
|
|
438 |
asm("mov ch, al"); // rounding flags into ch
|
|
439 |
asm("pop eax"); // recover result sign
|
|
440 |
asm("mov cl, al"); // into cl
|
|
441 |
asm("xor eax, eax"); // return KErrNone
|
|
442 |
asm("ret");
|
|
443 |
|
|
444 |
// come here if overflow
|
|
445 |
asm("mulfp6:");
|
|
446 |
asm("pop eax"); // recover result sign
|
|
447 |
asm("mov ecx, 0xFFFF0000"); // exponent=FFFF
|
|
448 |
asm("mov cl, al"); // sign into cl
|
|
449 |
asm("mov edx, 0x80000000"); // set mantissa to 80000000 00000000 for infinity
|
|
450 |
asm("xor ebx, ebx");
|
|
451 |
asm("mov eax, -9"); // return KErrOverflow
|
|
452 |
asm("ret");
|
|
453 |
|
|
454 |
// come here if underflow
|
|
455 |
asm("mulfp7:");
|
|
456 |
asm("pop eax"); // recover result sign
|
|
457 |
asm("xor ecx, ecx"); // exponent=0
|
|
458 |
asm("mov cl, al"); // sign into cl
|
|
459 |
asm("xor edx, edx");
|
|
460 |
asm("xor ebx, ebx");
|
|
461 |
asm("mov eax, -10"); // return KErrUnderflow
|
|
462 |
asm("ret");
|
|
463 |
|
|
464 |
// come here if either operand zero
|
|
465 |
asm("mulfp0:");
|
|
466 |
asm("and ecx, 1"); // set exponent=0, keep sign
|
|
467 |
asm("xor edx, edx");
|
|
468 |
asm("xor ebx, ebx");
|
|
469 |
asm("xor eax, eax"); // return KErrNone
|
|
470 |
asm("ret");
|
|
471 |
|
|
472 |
// come here if destination operand NaN or infinity
|
|
473 |
asm("mulfpsd:");
|
|
474 |
asm("cmp edx, 0x80000000"); // check for infinity
|
|
475 |
_ASM_jn(e,TRealXBinOpNaN) // branch if NaN
|
|
476 |
asm("test ebx, ebx");
|
|
477 |
_ASM_jn(e,TRealXBinOpNaN)
|
|
478 |
asm("cmp eax, 0xFFFF0000"); // check second operand for NaN or infinity
|
|
479 |
asm("jae short mulfpsd1"); // branch if NaN or infinity
|
|
480 |
asm("cmp eax, 0x10000"); // check if second operand zero
|
|
481 |
_ASM_j(c,TRealXRealIndefinite) // if so, return 'real indefinite'
|
|
482 |
asm("mov eax, -9"); // else return dest [infinity] with xor sign and KErrOverflow
|
|
483 |
asm("ret");
|
|
484 |
asm("mulfpsd1:");
|
|
485 |
asm("mov ebp, [esi]"); // source mantissa into edi:ebp
|
|
486 |
asm("mov edi, [esi+4]");
|
|
487 |
asm("cmp edi, 0x80000000"); // check for infinity
|
|
488 |
_ASM_jn(e,TRealXBinOpNaN) // branch if NaN
|
|
489 |
asm("test ebp, ebp");
|
|
490 |
_ASM_jn(e,TRealXBinOpNaN)
|
|
491 |
asm("mov eax, -9"); // both operands infinity - return infinity with xor sign
|
|
492 |
asm("ret"); // and KErrOverflow
|
|
493 |
|
|
494 |
// come here if source operand NaN or infinity, destination finite
|
|
495 |
asm("mulfpss:");
|
|
496 |
asm("mov ebp, [esi]"); // source mantissa into edi:ebp
|
|
497 |
asm("mov edi, [esi+4]");
|
|
498 |
asm("cmp edi, 0x80000000"); // check for infinity
|
|
499 |
_ASM_jn(e,TRealXBinOpNaN) // branch if NaN
|
|
500 |
asm("test ebp, ebp");
|
|
501 |
_ASM_jn(e,TRealXBinOpNaN)
|
|
502 |
asm("cmp ecx, 0x10000"); // source=infinity, check if dest=0
|
|
503 |
_ASM_j(c,TRealXRealIndefinite) // if so, return 'real indefinite'
|
|
504 |
asm("or ecx, 0xFFFF0000"); // set exp=FFFF, leave xor sign in cl
|
|
505 |
asm("mov edx, edi"); // set mantissa for infinity
|
|
506 |
asm("mov ebx, ebp");
|
|
507 |
asm("mov eax, -9"); // return KErrOverflow
|
|
508 |
asm("ret");
|
|
509 |
}
|
|
510 |
|
|
511 |
// Divide 96-bit unsigned dividend EDX:EAX:0 by 64-bit unsigned divisor ECX:EBX
|
|
512 |
// Assume ECX bit 31 = 1, ie 2^63 <= divisor < 2^64
|
|
513 |
// Assume the quotient fits in 32 bits
|
|
514 |
// Return 32 bit quotient in EDI
|
|
515 |
// Return 64 bit remainder in EBP:ESI
|
|
516 |
LOCAL_C __NAKED__ void LongDivide(void)
|
|
517 |
{
|
|
518 |
asm("push edx"); // save dividend
|
|
519 |
asm("push eax"); //
|
|
520 |
asm("cmp edx, ecx"); // check if truncation of divisor will overflow DIV instruction
|
|
521 |
asm("jb short longdiv1"); // skip if not
|
|
522 |
asm("xor eax, eax"); // else return quotient of 0xFFFFFFFF
|
|
523 |
asm("dec eax"); //
|
|
524 |
asm("jmp short longdiv2"); //
|
|
525 |
asm("longdiv1:");
|
|
526 |
asm("div ecx"); // divide EDX:EAX by ECX to give approximate quotient in EAX
|
|
527 |
asm("longdiv2:");
|
|
528 |
asm("mov edi, eax"); // save approx quotient
|
|
529 |
asm("mul ebx"); // multiply approx quotient by full divisor ECX:EBX
|
|
530 |
asm("mov esi, eax"); // first partial product into EBP:ESI
|
|
531 |
asm("mov ebp, edx"); //
|
|
532 |
asm("mov eax, edi"); // approx quotient back into eax
|
|
533 |
asm("mul ecx"); // upper partial product now in EDX:EAX
|
|
534 |
asm("add eax, ebp"); // add to form 96-bit product in EDX:EAX:ESI
|
|
535 |
asm("adc edx, 0"); //
|
|
536 |
asm("neg esi"); // remainder = dividend - approx quotient * divisor
|
|
537 |
asm("mov ebp, [esp]"); // fetch dividend bits 32-63
|
|
538 |
asm("sbb ebp, eax"); //
|
|
539 |
asm("mov eax, [esp+4]"); // fetch dividend bits 64-95
|
|
540 |
asm("sbb eax, edx"); // remainder is now in EAX:EBP:ESI
|
|
541 |
asm("jns short longdiv4"); // if remainder positive, quotient is correct, so exit
|
|
542 |
asm("longdiv3:");
|
|
543 |
asm("dec edi"); // else quotient is too big, so decrement it
|
|
544 |
asm("add esi, ebx"); // and add divisor to remainder
|
|
545 |
asm("adc ebp, ecx"); //
|
|
546 |
asm("adc eax, 0"); //
|
|
547 |
asm("js short longdiv3"); // if still negative, repeat [requires <4 iterations]
|
|
548 |
asm("longdiv4:");
|
|
549 |
asm("add esp, 8"); // remove dividend from stack
|
|
550 |
asm("ret"); // return with quotient in EDI, remainder in EBP:ESI
|
|
551 |
}
|
|
552 |
|
|
553 |
// Divide TRealX at [esi] / ecx,edx:ebx
|
|
554 |
// Result in ecx,edx:ebx
|
|
555 |
// Error code in eax
|
|
556 |
LOCAL_C __NAKED__ void TRealXDivide(void)
|
|
557 |
{
|
|
558 |
asm("xor ch, ch"); // clear rounding flags
|
|
559 |
asm("mov eax, [esi+8]"); // fetch sign/exponent of dividend
|
|
560 |
asm("xor cl, al"); // xor signs
|
|
561 |
asm("cmp eax, 0xFFFF0000"); // check if dividend=NaN or infinity
|
|
562 |
asm("jnc divfpss"); // branch if it is
|
|
563 |
asm("cmp ecx, 0xFFFF0000"); // check if divisor=NaN or infinity
|
|
564 |
asm("jnc divfpsd"); // branch if it is
|
|
565 |
asm("cmp ecx, 0x10000"); // check if divisor=0
|
|
566 |
asm("jc divfpdv0"); // branch if it is
|
|
567 |
asm("cmp eax, 0x10000"); // check if dividend=0
|
|
568 |
asm("jc divfpdd0"); // branch if it is
|
|
569 |
asm("push esi"); // save pointer to dividend
|
|
570 |
asm("push ecx"); // save result sign
|
|
571 |
asm("shr ecx, 16"); // divisor exponent into cx
|
|
572 |
asm("shr eax, 16"); // dividend exponent into ax
|
|
573 |
asm("sub eax, ecx"); // subtract exponents
|
|
574 |
asm("add eax, 0x7FFE"); // eax now contains result exponent
|
|
575 |
asm("push eax"); // save it
|
|
576 |
asm("mov ecx, edx"); // divisor mantissa into ecx:ebx
|
|
577 |
asm("mov edx, [esi+4]"); // dividend mantissa into edx:eax
|
|
578 |
asm("mov eax, [esi]");
|
|
579 |
asm("xor edi, edi"); // clear edi initially
|
|
580 |
asm("cmp edx, ecx"); // compare EDX:EAX with ECX:EBX
|
|
581 |
asm("jb short divfp1"); // if EDX:EAX < ECX:EBX, leave everything as is
|
|
582 |
asm("ja short divfp2"); //
|
|
583 |
asm("cmp eax, ebx"); // if EDX=ECX, then compare ls dwords
|
|
584 |
asm("jb short divfp1"); // if dividend mant < divisor mant, leave everything as is
|
|
585 |
asm("divfp2:");
|
|
586 |
asm("sub eax, ebx"); // else dividend mant -= divisor mant
|
|
587 |
asm("sbb edx, ecx"); //
|
|
588 |
asm("inc edi"); // and EDI=1 [bit 0 of EDI is the integer part of the result]
|
|
589 |
asm("inc dword ptr [esp]"); // also increment result exponent
|
|
590 |
asm("divfp1:");
|
|
591 |
asm("push edi"); // save top bit of result
|
|
592 |
asm("call %a0": : "i"(&LongDivide)); // divide EDX:EAX:0 by ECX:EBX to give next 32 bits of result in EDI
|
|
593 |
asm("push edi"); // save next 32 bits of result
|
|
594 |
asm("mov edx, ebp"); // remainder from EBP:ESI into EDX:EAX
|
|
595 |
asm("mov eax, esi"); //
|
|
596 |
asm("call %a0": : "i"(&LongDivide)); // divide EDX:EAX:0 by ECX:EBX to give next 32 bits of result in EDI
|
|
597 |
asm("test byte ptr [esp+4], 1"); // test integer bit of result
|
|
598 |
asm("jnz short divfp4"); // if set, no need to calculate another bit
|
|
599 |
asm("xor eax, eax"); //
|
|
600 |
asm("add esi, esi"); // 2*remainder into EAX:EBP:ESI
|
|
601 |
asm("adc ebp, ebp"); //
|
|
602 |
asm("adc eax, eax"); //
|
|
603 |
asm("sub esi, ebx"); // subtract divisor to generate final quotient bit
|
|
604 |
asm("sbb ebp, ecx"); //
|
|
605 |
asm("sbb eax, 0"); //
|
|
606 |
asm("jnc short divfp3"); // skip if no borrow - in this case eax=0
|
|
607 |
asm("add esi, ebx"); // if borrow add back - final remainder now in EBP:ESI
|
|
608 |
asm("adc ebp, ecx"); //
|
|
609 |
asm("adc eax, 0"); // eax will be zero after this and carry will be set
|
|
610 |
asm("divfp3:");
|
|
611 |
asm("cmc"); // final bit = 1-C
|
|
612 |
asm("rcr eax, 1"); // shift it into eax bit 31
|
|
613 |
asm("mov ebx, edi"); // result into EDX:EBX:EAX, remainder in EBP:ESI
|
|
614 |
asm("pop edx");
|
|
615 |
asm("add esp, 4"); // discard integer bit [zero]
|
|
616 |
asm("jmp short divfp5"); // branch to round
|
|
617 |
|
|
618 |
asm("divfp4:"); // integer bit was set
|
|
619 |
asm("mov ebx, edi"); // result into EDX:EBX:EAX
|
|
620 |
asm("pop edx"); //
|
|
621 |
asm("pop eax"); // integer part of result into eax [=1]
|
|
622 |
asm("stc"); // shift a 1 into top end of mantissa
|
|
623 |
asm("rcr edx,1"); //
|
|
624 |
asm("rcr ebx,1"); //
|
|
625 |
asm("rcr eax,1"); // bottom bit into eax bit 31
|
|
626 |
|
|
627 |
// when we get to here we have 65 bits of quotient mantissa in
|
|
628 |
// EDX:EBX:EAX (bottom bit in eax bit 31)
|
|
629 |
// and the remainder is in EBP:ESI
|
|
630 |
asm("divfp5:");
|
|
631 |
asm("pop ecx"); // recover result exponent
|
|
632 |
asm("add eax, eax"); // test rounding bit
|
|
633 |
asm("jnc short divfp6"); // branch to round down
|
|
634 |
asm("or ebp, esi"); // test remainder to see if we are exactly half-way
|
|
635 |
asm("jnz short divfp7"); // if not, round up
|
|
636 |
asm("test bl, 1"); // exactly halfway - test LSB of mantissa
|
|
637 |
asm("jz short divfp8"); // round down if LSB=0 [round to even]
|
|
638 |
asm("divfp7:");
|
|
639 |
asm("add ebx, 1"); // round up - increment mantissa
|
|
640 |
asm("adc edx, 0");
|
|
641 |
asm("jnc short divfp7a");
|
|
642 |
asm("rcr edx, 1"); // if carry, shift 1 into mantissa MSB
|
|
643 |
asm("inc ecx"); // and increment exponent
|
|
644 |
asm("divfp7a:");
|
|
645 |
asm("mov al, 2"); // set rounded-up flag
|
|
646 |
asm("jmp short divfp9");
|
|
647 |
asm("divfp6:");
|
|
648 |
asm("xor al, al"); // round down - first clear rounding flags
|
|
649 |
asm("or ebp, esi"); // test if result exact
|
|
650 |
asm("jz short divfp9"); // skip if exact
|
|
651 |
asm("divfp8:"); // come here to round down when we know result is inexact
|
|
652 |
asm("mov al, 1"); // set rounded-down flag
|
|
653 |
asm("divfp9:"); // final mantissa now in edx:ebx, exponent in ecx
|
|
654 |
asm("cmp ecx, 0xFFFF"); // check for overflow
|
|
655 |
asm("jge short divfp10"); // branch if overflow
|
|
656 |
asm("cmp ecx, 0"); // check for underflow
|
|
657 |
asm("jle short divfp11"); // branch if underflow
|
|
658 |
asm("shl ecx, 16"); // else exponent up to top end of ecx
|
|
659 |
asm("mov ch, al"); // rounding flags into ch
|
|
660 |
asm("pop eax"); // recover result sign
|
|
661 |
asm("mov cl, al"); // into cl
|
|
662 |
asm("pop esi"); // recover dividend pointer
|
|
663 |
asm("xor eax, eax"); // return KErrNone
|
|
664 |
asm("ret");
|
|
665 |
|
|
666 |
// come here if overflow
|
|
667 |
asm("divfp10:");
|
|
668 |
asm("pop eax"); // recover result sign
|
|
669 |
asm("mov ecx, 0xFFFF0000"); // exponent=FFFF
|
|
670 |
asm("mov cl, al"); // sign into cl
|
|
671 |
asm("mov edx, 0x80000000"); // set mantissa to 80000000 00000000 for infinity
|
|
672 |
asm("xor ebx, ebx");
|
|
673 |
asm("mov eax, -9"); // return KErrOverflow
|
|
674 |
asm("pop esi"); // recover dividend pointer
|
|
675 |
asm("ret");
|
|
676 |
|
|
677 |
// come here if underflow
|
|
678 |
asm("divfp11:");
|
|
679 |
asm("pop eax"); // recover result sign
|
|
680 |
asm("xor ecx, ecx"); // exponent=0
|
|
681 |
asm("mov cl, al"); // sign into cl
|
|
682 |
asm("xor edx, edx");
|
|
683 |
asm("xor ebx, ebx");
|
|
684 |
asm("mov eax, -10"); // return KErrUnderflow
|
|
685 |
asm("pop esi"); // recover dividend pointer
|
|
686 |
asm("ret");
|
|
687 |
|
|
688 |
|
|
689 |
// come here if divisor=0, dividend finite
|
|
690 |
asm("divfpdv0:");
|
|
691 |
asm("cmp eax, 0x10000"); // check if dividend also zero
|
|
692 |
_ASM_j(c,TRealXRealIndefinite) // if so, return 'real indefinite'
|
|
693 |
asm("or ecx, 0xFFFF0000"); // else set exponent=FFFF, leave xor sign in cl
|
|
694 |
asm("mov edx, 0x80000000"); // set mantissa for infinity
|
|
695 |
asm("xor ebx, ebx");
|
|
696 |
asm("mov eax, -41"); // return KErrDivideByZero
|
|
697 |
asm("ret");
|
|
698 |
|
|
699 |
// come here if dividend=0, divisor finite and nonzero
|
|
700 |
asm("divfpdd0:");
|
|
701 |
asm("and ecx, 1"); // exponent=0, leave xor sign in cl
|
|
702 |
asm("xor eax, eax"); // return KErrNone
|
|
703 |
asm("ret");
|
|
704 |
|
|
705 |
// come here if dividend is a NaN or infinity
|
|
706 |
asm("divfpss:");
|
|
707 |
asm("mov ebp, [esi]"); // dividend mantissa into edi:ebp
|
|
708 |
asm("mov edi, [esi+4]");
|
|
709 |
asm("cmp edi, 0x80000000"); // check for infinity
|
|
710 |
_ASM_jn(e,TRealXBinOpNaN) // branch if NaN
|
|
711 |
asm("test ebp, ebp");
|
|
712 |
_ASM_jn(e,TRealXBinOpNaN)
|
|
713 |
asm("cmp ecx, 0xFFFF0000"); // check divisor for NaN or infinity
|
|
714 |
asm("jae short divfpss1"); // branch if NaN or infinity
|
|
715 |
asm("or ecx, 0xFFFF0000"); // infinity/finite - return infinity with xor sign
|
|
716 |
asm("mov edx, 0x80000000");
|
|
717 |
asm("xor ebx, ebx");
|
|
718 |
asm("mov eax, -9"); // return KErrOverflow
|
|
719 |
asm("ret");
|
|
720 |
asm("divfpss1:");
|
|
721 |
asm("cmp edx, 0x80000000"); // check for infinity
|
|
722 |
_ASM_jn(e,TRealXBinOpNaN) // branch if NaN
|
|
723 |
asm("test ebx, ebx");
|
|
724 |
_ASM_jn(e,TRealXBinOpNaN)
|
|
725 |
asm("jmp %a0": : "i"(&TRealXRealIndefinite)); // if both operands infinite, return 'real indefinite'
|
|
726 |
|
|
727 |
// come here if divisor is a NaN or infinity, dividend finite
|
|
728 |
asm("divfpsd:");
|
|
729 |
asm("cmp edx, 0x80000000"); // check for infinity
|
|
730 |
_ASM_jn(e,TRealXBinOpNaN) // branch if NaN
|
|
731 |
asm("test ebx, ebx");
|
|
732 |
_ASM_jn(e,TRealXBinOpNaN)
|
|
733 |
asm("and ecx, 1"); // dividend is finite, divisor=infinity, so return 0 with xor sign
|
|
734 |
asm("xor edx, edx");
|
|
735 |
asm("xor ebx, ebx");
|
|
736 |
asm("xor eax, eax"); // return KErrNone
|
|
737 |
asm("ret");
|
|
738 |
}
|
|
739 |
|
|
740 |
// TRealX modulo - dividend at [esi], divisor in ecx,edx:ebx
|
|
741 |
// Result in ecx,edx:ebx
|
|
742 |
// Error code in eax
|
|
743 |
LOCAL_C __NAKED__ void TRealXModulo(void)
|
|
744 |
{
|
|
745 |
asm("mov eax, [esi+8]"); // fetch sign/exponent of dividend
|
|
746 |
asm("mov cl, al"); // result sign=dividend sign
|
|
747 |
asm("xor ch, ch"); // clear rounding flags
|
|
748 |
asm("cmp eax, 0xFFFF0000"); // check if dividend=NaN or infinity
|
|
749 |
asm("jnc short modfpss"); // branch if it is
|
|
750 |
asm("cmp ecx, 0xFFFF0000"); // check if divisor=NaN or infinity
|
|
751 |
asm("jnc short modfpsd"); // branch if it is
|
|
752 |
asm("cmp ecx, 0x10000"); // check if divisor=0
|
|
753 |
_ASM_j(c,TRealXRealIndefinite) // if so, return 'real indefinite'
|
|
754 |
asm("shr eax, 16"); // ax=dividend exponent
|
|
755 |
asm("ror ecx, 16"); // cx=divisor exponent
|
|
756 |
asm("sub ax, cx"); // ax=dividend exponent-divisor exponent
|
|
757 |
asm("jc short modfpdd0"); // if dividend exponent is smaller, return dividend
|
|
758 |
asm("cmp ax, 64"); // check if exponents differ by >= 64 bits
|
|
759 |
asm("jnc short modfplp"); // if so, underflow
|
|
760 |
asm("mov ah, 0"); // ah bit 0 acts as 65th accumulator bit
|
|
761 |
asm("mov ebp, [esi]"); // edi:ebp=dividend mantissa
|
|
762 |
asm("mov edi, [esi+4]"); //
|
|
763 |
asm("jmp short modfp2"); // skip left shift on first iteration
|
|
764 |
asm("modfp1:");
|
|
765 |
asm("add ebp, ebp"); // shift accumulator left [65 bits]
|
|
766 |
asm("adc edi, edi");
|
|
767 |
asm("adc ah, ah");
|
|
768 |
asm("modfp2:");
|
|
769 |
asm("sub ebp, ebx"); // subtract divisor from dividend
|
|
770 |
asm("sbb edi, edx");
|
|
771 |
asm("sbb ah, 0");
|
|
772 |
asm("jnc short modfp3"); // skip if no borrow
|
|
773 |
asm("add ebp, ebx"); // else add back
|
|
774 |
asm("adc edi, edx");
|
|
775 |
asm("adc ah, 0");
|
|
776 |
asm("modfp3:");
|
|
777 |
asm("dec al"); // any more bits to do?
|
|
778 |
asm("jns short modfp1"); // loop if there are
|
|
779 |
asm("mov edx, edi"); // result mantissa [not yet normalised] into edx:ebx
|
|
780 |
asm("mov ebx, ebp");
|
|
781 |
asm("or edi, ebx"); // check for zero
|
|
782 |
asm("jz short modfp0"); // jump if result zero
|
|
783 |
asm("or edx, edx"); // check if ms dword zero
|
|
784 |
asm("jnz short modfp4");
|
|
785 |
asm("mov edx, ebx"); // if so, shift left by 32
|
|
786 |
asm("xor ebx, ebx");
|
|
787 |
asm("sub cx, 32"); // and decrement exponent by 32
|
|
788 |
asm("jbe short modfpund"); // if borrow or exponent zero, underflow
|
|
789 |
asm("modfp4:");
|
|
790 |
asm("mov edi, ecx"); // preserve sign and exponent
|
|
791 |
asm("bsr ecx, edx"); // position of most significant 1 into ecx
|
|
792 |
asm("neg ecx"); //
|
|
793 |
asm("add ecx, 31"); // cl = 31-position of MS 1 = number of shifts to normalise
|
|
794 |
asm("shld edx, ebx, cl"); // shift edx:ebx left by cl bits
|
|
795 |
asm("shl ebx, cl"); //
|
|
796 |
asm("mov ebp, ecx"); // bit count into ebp for subtraction
|
|
797 |
asm("mov ecx, edi"); // exponent & sign back into ecx
|
|
798 |
asm("sub cx, bp"); // subtract shift count from exponent
|
|
799 |
asm("jbe short modfpund"); // if borrow or exponent 0, underflow
|
|
800 |
asm("rol ecx, 16"); // else ecx=exponent:sign
|
|
801 |
asm("xor eax, eax"); // normal exit, result in ecx,edx:ebx
|
|
802 |
asm("ret");
|
|
803 |
|
|
804 |
// dividend=NaN or infinity
|
|
805 |
asm("modfpss:");
|
|
806 |
asm("mov ebp, [esi]"); // dividend mantissa into edi:ebp
|
|
807 |
asm("mov edi, [esi+4]");
|
|
808 |
asm("cmp edi, 0x80000000"); // check for infinity
|
|
809 |
_ASM_jn(e,TRealXBinOpNaN) // branch if NaN
|
|
810 |
asm("test ebp, ebp");
|
|
811 |
_ASM_jn(e,TRealXBinOpNaN)
|
|
812 |
asm("cmp ecx, 0xFFFF0000"); // check divisor for NaN or infinity
|
|
813 |
_ASM_j(b,TRealXRealIndefinite) // infinity%finite - return 'real indefinite'
|
|
814 |
asm("cmp edx, 0x80000000"); // check for divisor=infinity
|
|
815 |
_ASM_jn(e,TRealXBinOpNaN) // branch if NaN
|
|
816 |
asm("test ebx, ebx");
|
|
817 |
_ASM_jn(e,TRealXBinOpNaN)
|
|
818 |
asm("jmp %a0": : "i"(&TRealXRealIndefinite)); // if both operands infinite, return 'real indefinite'
|
|
819 |
|
|
820 |
// divisor=NaN or infinity, dividend finite
|
|
821 |
asm("modfpsd:");
|
|
822 |
asm("cmp edx, 0x80000000"); // check for infinity
|
|
823 |
_ASM_jn(e,TRealXBinOpNaN) // branch if NaN
|
|
824 |
asm("test ebx, ebx");
|
|
825 |
_ASM_jn(e,TRealXBinOpNaN)
|
|
826 |
// finite%infinity - return dividend unaltered
|
|
827 |
|
|
828 |
asm("modfpdd0:");
|
|
829 |
asm("mov ebx, [esi]"); // normal exit, return dividend unaltered
|
|
830 |
asm("mov edx, [esi+4]");
|
|
831 |
asm("mov ecx, [esi+8]");
|
|
832 |
asm("xor eax, eax");
|
|
833 |
asm("ret");
|
|
834 |
|
|
835 |
asm("modfp0:");
|
|
836 |
asm("shr ecx, 16"); // normal exit, result 0
|
|
837 |
asm("xor eax, eax");
|
|
838 |
asm("ret");
|
|
839 |
|
|
840 |
asm("modfpund:");
|
|
841 |
asm("shr ecx, 16"); // underflow, result 0
|
|
842 |
asm("mov eax, -10"); // return KErrUnderflow
|
|
843 |
asm("ret");
|
|
844 |
|
|
845 |
asm("modfplp:");
|
|
846 |
asm("shr ecx, 16"); // loss of precision, result 0
|
|
847 |
asm("mov eax, -7"); // return KErrTotalLossOfPrecision
|
|
848 |
asm("ret");
|
|
849 |
}
|
|
850 |
|
|
851 |
|
|
852 |
|
|
853 |
|
|
854 |
__NAKED__ EXPORT_C TRealX::TRealX()
|
|
855 |
/**
|
|
856 |
Constructs a default extended precision object.
|
|
857 |
|
|
858 |
This sets the value to zero.
|
|
859 |
*/
|
|
860 |
{
|
|
861 |
THISCALL_PROLOG0()
|
|
862 |
asm("xor eax, eax");
|
|
863 |
asm("mov [ecx], eax"); // set value to zero
|
|
864 |
asm("mov [ecx+4], eax");
|
|
865 |
asm("mov [ecx+8], eax");
|
|
866 |
asm("mov eax, ecx"); // must return this
|
|
867 |
THISCALL_EPILOG0()
|
|
868 |
}
|
|
869 |
|
|
870 |
|
|
871 |
|
|
872 |
|
|
873 |
__NAKED__ EXPORT_C TRealX::TRealX(TUint /*aExp*/, TUint /*aMantHi*/, TUint /*aMantLo*/)
|
|
874 |
/**
|
|
875 |
Constructs an extended precision object from an explicit exponent and
|
|
876 |
a 64 bit mantissa.
|
|
877 |
|
|
878 |
@param aExp The exponent
|
|
879 |
@param aMantHi The high order 32 bits of the 64 bit mantissa
|
|
880 |
@param aMantLo The low order 32 bits of the 64 bit mantissa
|
|
881 |
*/
|
|
882 |
{
|
|
883 |
THISCALL_PROLOG3()
|
|
884 |
asm("mov eax, [esp+4]"); // eax=aExp
|
|
885 |
asm("mov [ecx+8], eax");
|
|
886 |
asm("mov eax, [esp+8]"); // eax=aMantHi
|
|
887 |
asm("mov [ecx+4], eax");
|
|
888 |
asm("mov eax, [esp+12]"); // eax=aMantLo
|
|
889 |
asm("mov [ecx], eax");
|
|
890 |
asm("mov eax, ecx"); // must return this
|
|
891 |
THISCALL_EPILOG3()
|
|
892 |
}
|
|
893 |
|
|
894 |
|
|
895 |
__NAKED__ EXPORT_C TInt TRealX::Set(TInt /*aInt*/)
|
|
896 |
/**
|
|
897 |
Gives this extended precision object a new value taken
|
|
898 |
from a signed integer.
|
|
899 |
|
|
900 |
@param aInt The signed integer value.
|
|
901 |
|
|
902 |
@return KErrNone, always.
|
|
903 |
*/
|
|
904 |
{
|
|
905 |
THISCALL_PROLOG1()
|
|
906 |
// on entry ecx=this, [esp+4]=aInt, return code in eax
|
|
907 |
asm("mov edx, [esp+4]"); // edx=aInt
|
|
908 |
asm("or edx, edx"); // test sign/zero
|
|
909 |
asm("mov eax, 0x7FFF");
|
|
910 |
asm("jz short trealxfromint0_2"); // branch if 0
|
|
911 |
asm("jns short trealxfromint1_2");// skip if positive
|
|
912 |
asm("neg edx"); // take absolute value
|
|
913 |
asm("add eax, 0x10000"); // sign bit in eax bit 16
|
|
914 |
asm("trealxfromint1_2:");
|
|
915 |
asm("push ecx"); // save this
|
|
916 |
asm("bsr ecx, edx"); // bit number of edx MSB into ecx
|
|
917 |
asm("add eax, ecx"); // add to eax to form result exponent
|
|
918 |
asm("neg cl");
|
|
919 |
asm("add cl, 31"); // 31-bit number = number of shifts to normalise edx
|
|
920 |
asm("shl edx, cl"); // normalise edx
|
|
921 |
asm("pop ecx"); // this back into ecx
|
|
922 |
asm("ror eax, 16"); // sign/exponent into normal positions
|
|
923 |
asm("mov [ecx+4], edx"); // store mantissa high word
|
|
924 |
asm("mov [ecx+8], eax"); // store sign/exponent
|
|
925 |
asm("xor eax, eax");
|
|
926 |
asm("mov [ecx], eax"); // zero mantissa low word
|
|
927 |
THISCALL_EPILOG1() // return KErrNone
|
|
928 |
asm("trealxfromint0_2:");
|
|
929 |
asm("mov [ecx], edx");
|
|
930 |
asm("mov [ecx+4], edx"); // store mantissa high word=0
|
|
931 |
asm("mov [ecx+8], edx"); // store sign/exponent=0
|
|
932 |
asm("xor eax, eax"); // return KErrNone
|
|
933 |
THISCALL_EPILOG1()
|
|
934 |
}
|
|
935 |
|
|
936 |
|
|
937 |
|
|
938 |
__NAKED__ EXPORT_C TInt TRealX::Set(TUint /*aInt*/)
|
|
939 |
/**
|
|
940 |
Gives this extended precision object a new value taken from
|
|
941 |
an unsigned integer.
|
|
942 |
|
|
943 |
@param aInt The unsigned integer value.
|
|
944 |
|
|
945 |
@return KErrNone, always.
|
|
946 |
*/
|
|
947 |
{
|
|
948 |
THISCALL_PROLOG1()
|
|
949 |
asm("mov edx, [esp+4]"); // edx=aInt
|
|
950 |
asm("mov eax, 0x7FFF");
|
|
951 |
asm("or edx, edx"); // test for 0
|
|
952 |
asm("jz short trealxfromuint0_");// branch if 0
|
|
953 |
asm("push ecx"); // save this
|
|
954 |
asm("bsr ecx, edx"); // bit number of edx MSB into ecx
|
|
955 |
asm("add eax, ecx"); // add to eax to form result exponent
|
|
956 |
asm("neg cl");
|
|
957 |
asm("add cl, 31"); // 31-bit number = number of shifts to normalise edx
|
|
958 |
asm("shl edx, cl"); // normalise edx
|
|
959 |
asm("pop ecx"); // this back into ecx
|
|
960 |
asm("shl eax, 16"); // exponent into normal position
|
|
961 |
asm("mov [ecx+4], edx"); // store mantissa high word
|
|
962 |
asm("mov [ecx+8], eax"); // store exponent
|
|
963 |
asm("xor eax, eax");
|
|
964 |
asm("mov [ecx], eax"); // zero mantissa low word
|
|
965 |
THISCALL_EPILOG1() // return KErrNone
|
|
966 |
asm("trealxfromuint0_:");
|
|
967 |
asm("mov [ecx], edx");
|
|
968 |
asm("mov [ecx+4], edx"); // store mantissa high word=0
|
|
969 |
asm("mov [ecx+8], edx"); // store sign/exponent=0
|
|
970 |
asm("xor eax, eax"); // return KErrNone
|
|
971 |
THISCALL_EPILOG1()
|
|
972 |
}
|
|
973 |
|
|
974 |
|
|
975 |
|
|
976 |
|
|
977 |
LOCAL_C __NAKED__ void TRealXFromTInt64(void)
|
|
978 |
{
|
|
979 |
// Convert TInt64 in edx:ebx to TRealX in ecx,edx:ebx
|
|
980 |
asm("mov eax, 0x7FFF");
|
|
981 |
asm("or edx, edx"); // test sign/zero
|
|
982 |
asm("jz short trealxfromtint64a"); // branch if top word zero
|
|
983 |
asm("jns short trealxfromtint64b");
|
|
984 |
asm("add eax, 0x10000"); // sign bit into eax bit 16
|
|
985 |
asm("neg edx"); // take absolute value
|
|
986 |
asm("neg ebx");
|
|
987 |
asm("sbb edx, 0");
|
|
988 |
asm("jz short trealxfromtint64d"); // branch if top word zero
|
|
989 |
asm("trealxfromtint64b:");
|
|
990 |
asm("bsr ecx, edx"); // ecx=bit number of edx MSB
|
|
991 |
asm("add eax, ecx"); // add to exponent in eax
|
|
992 |
asm("add eax, 32");
|
|
993 |
asm("neg cl");
|
|
994 |
asm("add cl, 31"); // 31-bit number = number of left shifts to normalise
|
|
995 |
asm("shld edx, ebx, cl"); // shift left to normalise edx:ebx
|
|
996 |
asm("shl ebx, cl");
|
|
997 |
asm("mov ecx, eax"); // sign/exponent into ecx
|
|
998 |
asm("ror ecx, 16"); // and into normal positions
|
|
999 |
asm("ret");
|
|
1000 |
asm("trealxfromtint64a:"); // come here if top word zero
|
|
1001 |
asm("or ebx, ebx"); // test for bottom word also zero
|
|
1002 |
asm("jz short trealxfromtint64c"); // branch if it is
|
|
1003 |
asm("trealxfromtint64d:"); // come here if top word zero, bottom word not
|
|
1004 |
asm("mov edx, ebx"); // shift edx:ebx left 32
|
|
1005 |
asm("xor ebx, ebx");
|
|
1006 |
asm("bsr ecx, edx"); // ecx=bit number of edx MSB
|
|
1007 |
asm("add eax, ecx"); // add to exponent in eax
|
|
1008 |
asm("neg cl");
|
|
1009 |
asm("add cl, 31"); // 31-bit number = number of left shifts to normalise
|
|
1010 |
asm("shl edx, cl"); // normalise
|
|
1011 |
asm("mov ecx, eax"); // sign/exponent into ecx
|
|
1012 |
asm("ror ecx, 16"); // and into normal positions
|
|
1013 |
asm("ret");
|
|
1014 |
asm("trealxfromtint64c:"); // entire number is zero
|
|
1015 |
asm("xor ecx, ecx");
|
|
1016 |
asm("ret");
|
|
1017 |
}
|
|
1018 |
|
|
1019 |
|
|
1020 |
|
|
1021 |
|
|
1022 |
__NAKED__ EXPORT_C TInt TRealX::Set(const TInt64& /*aInt*/)
|
|
1023 |
/**
|
|
1024 |
Gives this extended precision object a new value taken from
|
|
1025 |
a 64 bit integer.
|
|
1026 |
|
|
1027 |
@param aInt The 64 bit integer value.
|
|
1028 |
|
|
1029 |
@return KErrNone, always.
|
|
1030 |
*/
|
|
1031 |
{
|
|
1032 |
// on entry ecx=this, [esp+4]=address of aInt, return code in eax
|
|
1033 |
THISCALL_PROLOG1()
|
|
1034 |
asm("push ebx");
|
|
1035 |
asm("push ecx");
|
|
1036 |
asm("mov edx, [esp+12]"); // edx=address of aInt
|
|
1037 |
asm("mov ebx, [edx]");
|
|
1038 |
asm("mov edx, [edx+4]"); // edx:ebx=aInt
|
|
1039 |
asm("call %a0": : "i"(&TRealXFromTInt64)); // convert to TRealX in ecx,edx:ebx
|
|
1040 |
asm("pop eax"); // eax=this
|
|
1041 |
asm("mov [eax], ebx"); // store result
|
|
1042 |
asm("mov [eax+4], edx");
|
|
1043 |
asm("mov [eax+8], ecx");
|
|
1044 |
asm("xor eax, eax"); // return KErrNone
|
|
1045 |
asm("pop ebx");
|
|
1046 |
THISCALL_EPILOG1()
|
|
1047 |
}
|
|
1048 |
|
|
1049 |
|
|
1050 |
|
|
1051 |
LOCAL_C __NAKED__ void __6TRealXi()
|
|
1052 |
{
|
|
1053 |
// common function for int to TRealX
|
|
1054 |
THISCALL_PROLOG1()
|
|
1055 |
asm("mov edx, [esp+4]"); // edx=aInt
|
|
1056 |
asm("or edx, edx"); // test sign/zero
|
|
1057 |
asm("mov eax, 0x7FFF");
|
|
1058 |
asm("jz short trealxfromint0"); // branch if 0
|
|
1059 |
asm("jns short trealxfromint1"); // skip if positive
|
|
1060 |
asm("neg edx"); // take absolute value
|
|
1061 |
asm("add eax, 0x10000"); // sign bit in eax bit 16
|
|
1062 |
asm("trealxfromint1:");
|
|
1063 |
asm("push ecx"); // save this
|
|
1064 |
asm("bsr ecx, edx"); // bit number of edx MSB into ecx
|
|
1065 |
asm("add eax, ecx"); // add to eax to form result exponent
|
|
1066 |
asm("neg cl");
|
|
1067 |
asm("add cl, 31"); // 31-bit number = number of shifts to normalise edx
|
|
1068 |
asm("shl edx, cl"); // normalise edx
|
|
1069 |
asm("pop ecx"); // this back into ecx
|
|
1070 |
asm("ror eax, 16"); // sign/exponent into normal positions
|
|
1071 |
asm("mov [ecx+4], edx"); // store mantissa high word
|
|
1072 |
asm("mov [ecx+8], eax"); // store sign/exponent
|
|
1073 |
asm("xor eax, eax");
|
|
1074 |
asm("mov [ecx], eax"); // zero mantissa low word
|
|
1075 |
asm("mov eax, ecx"); // return eax=this
|
|
1076 |
THISCALL_EPILOG1()
|
|
1077 |
asm("trealxfromint0:");
|
|
1078 |
asm("mov [ecx], edx");
|
|
1079 |
asm("mov [ecx+4], edx"); // store mantissa high word=0
|
|
1080 |
asm("mov [ecx+8], edx"); // store sign/exponent=0
|
|
1081 |
asm("mov eax, ecx"); // return eax=this
|
|
1082 |
THISCALL_EPILOG1()
|
|
1083 |
}
|
|
1084 |
|
|
1085 |
|
|
1086 |
__NAKED__ EXPORT_C TRealX::TRealX(TInt /*aInt*/)
|
|
1087 |
/**
|
|
1088 |
Constructs an extended precision object from a signed integer value.
|
|
1089 |
|
|
1090 |
@param aInt The signed integer value.
|
|
1091 |
*/
|
|
1092 |
{
|
|
1093 |
// on entry ecx=this, [esp+4]=aInt, return eax=this
|
|
1094 |
asm("jmp %a0": : "i"(&__6TRealXi));
|
|
1095 |
}
|
|
1096 |
|
|
1097 |
|
|
1098 |
|
|
1099 |
|
|
1100 |
__NAKED__ EXPORT_C TRealX& TRealX::operator=(TInt /*aInt*/)
|
|
1101 |
/**
|
|
1102 |
Assigns the specified signed integer value to this extended precision object.
|
|
1103 |
|
|
1104 |
@param aInt The signed integer value.
|
|
1105 |
|
|
1106 |
@return A reference to this extended precision object.
|
|
1107 |
*/
|
|
1108 |
{
|
|
1109 |
// on entry ecx=this, [esp+4]=aInt, return eax=this
|
|
1110 |
asm("jmp %a0": : "i"(&__6TRealXi));
|
|
1111 |
}
|
|
1112 |
|
|
1113 |
|
|
1114 |
|
|
1115 |
LOCAL_C __NAKED__ void __6TRealXui()
|
|
1116 |
{
|
|
1117 |
// common function for unsigned int to TRealX
|
|
1118 |
THISCALL_PROLOG1()
|
|
1119 |
asm("mov edx, [esp+4]"); // edx=aInt
|
|
1120 |
asm("mov eax, 0x7FFF");
|
|
1121 |
asm("or edx, edx"); // test for zero
|
|
1122 |
asm("jz short trealxfromuint0"); // branch if 0
|
|
1123 |
asm("push ecx"); // save this
|
|
1124 |
asm("bsr ecx, edx"); // bit number of edx MSB into ecx
|
|
1125 |
asm("add eax, ecx"); // add to eax to form result exponent
|
|
1126 |
asm("neg cl");
|
|
1127 |
asm("add cl, 31"); // 31-bit number = number of shifts to normalise edx
|
|
1128 |
asm("shl edx, cl"); // normalise edx
|
|
1129 |
asm("pop ecx"); // this back into ecx
|
|
1130 |
asm("shl eax, 16"); // exponent into normal position
|
|
1131 |
asm("mov [ecx+4], edx"); // store mantissa high word
|
|
1132 |
asm("mov [ecx+8], eax"); // store exponent
|
|
1133 |
asm("xor eax, eax");
|
|
1134 |
asm("mov [ecx], eax"); // zero mantissa low word
|
|
1135 |
asm("mov eax, ecx"); // return eax=this
|
|
1136 |
THISCALL_EPILOG1()
|
|
1137 |
asm("trealxfromuint0:");
|
|
1138 |
asm("mov [ecx], edx");
|
|
1139 |
asm("mov [ecx+4], edx"); // store mantissa high word=0
|
|
1140 |
asm("mov [ecx+8], edx"); // store sign/exponent=0
|
|
1141 |
asm("mov eax, ecx"); // return eax=this
|
|
1142 |
THISCALL_EPILOG1()
|
|
1143 |
}
|
|
1144 |
|
|
1145 |
|
|
1146 |
|
|
1147 |
__NAKED__ EXPORT_C TRealX::TRealX(TUint /*aInt*/)
|
|
1148 |
/**
|
|
1149 |
Constructs an extended precision object from an unsigned integer value.
|
|
1150 |
|
|
1151 |
@param aInt The unsigned integer value.
|
|
1152 |
*/
|
|
1153 |
{
|
|
1154 |
// on entry ecx=this, [esp+4]=aInt, return eax=this
|
|
1155 |
asm("jmp %a0": : "i"(&__6TRealXui));
|
|
1156 |
}
|
|
1157 |
|
|
1158 |
|
|
1159 |
|
|
1160 |
|
|
1161 |
__NAKED__ EXPORT_C TRealX& TRealX::operator=(TUint /*aInt*/)
|
|
1162 |
/**
|
|
1163 |
Assigns the specified unsigned integer value to this extended precision object.
|
|
1164 |
|
|
1165 |
@param aInt The unsigned integer value.
|
|
1166 |
|
|
1167 |
@return A reference to this extended precision object.
|
|
1168 |
*/
|
|
1169 |
{
|
|
1170 |
// on entry ecx=this, [esp+4]=aInt, return eax=this
|
|
1171 |
asm("jmp %a0": : "i"(&__6TRealXui));
|
|
1172 |
}
|
|
1173 |
|
|
1174 |
|
|
1175 |
|
|
1176 |
|
|
1177 |
LOCAL_C __NAKED__ void __6TRealXRC6TInt64()
|
|
1178 |
{
|
|
1179 |
// common function for TInt64 to TRealX
|
|
1180 |
THISCALL_PROLOG1()
|
|
1181 |
asm("push ebx"); // preserve ebx
|
|
1182 |
asm("push ecx"); // save this
|
|
1183 |
asm("mov edx, [esp+12]"); // edx=address of aInt
|
|
1184 |
asm("mov ebx, [edx]");
|
|
1185 |
asm("mov edx, [edx+4]"); // edx:ebx=aInt
|
|
1186 |
asm("call %a0": : "i"(&TRealXFromTInt64)); // convert to TRealX in ecx,edx:ebx
|
|
1187 |
asm("pop eax"); // eax=this
|
|
1188 |
asm("mov [eax], ebx"); // store result
|
|
1189 |
asm("mov [eax+4], edx");
|
|
1190 |
asm("mov [eax+8], ecx");
|
|
1191 |
asm("mov ecx, eax"); // restore this ptr
|
|
1192 |
asm("pop ebx"); // restore ebx
|
|
1193 |
THISCALL_EPILOG1()
|
|
1194 |
}
|
|
1195 |
|
|
1196 |
|
|
1197 |
|
|
1198 |
|
|
1199 |
__NAKED__ EXPORT_C TRealX::TRealX(const TInt64& /*aInt*/)
|
|
1200 |
/**
|
|
1201 |
Constructs an extended precision object from a 64 bit integer.
|
|
1202 |
|
|
1203 |
@param aInt A reference to a 64 bit integer.
|
|
1204 |
*/
|
|
1205 |
{
|
|
1206 |
// on entry ecx=this, [esp+4]=address of aInt, return eax=this
|
|
1207 |
asm("jmp %a0": : "i"(&__6TRealXRC6TInt64));
|
|
1208 |
}
|
|
1209 |
|
|
1210 |
|
|
1211 |
|
|
1212 |
|
|
1213 |
__NAKED__ EXPORT_C TRealX& TRealX::operator=(const TInt64& /*aInt*/)
|
|
1214 |
/**
|
|
1215 |
Assigns the specified 64 bit integer value to this extended precision object.
|
|
1216 |
|
|
1217 |
@param aInt A reference to a 64 bit integer.
|
|
1218 |
|
|
1219 |
@return A reference to this extended precision object.
|
|
1220 |
*/
|
|
1221 |
{
|
|
1222 |
// on entry ecx=this, [esp+4]=address of aInt, return eax=this
|
|
1223 |
asm("jmp %a0": : "i"(&__6TRealXRC6TInt64));
|
|
1224 |
}
|
|
1225 |
|
|
1226 |
|
|
1227 |
|
|
1228 |
|
|
1229 |
LOCAL_C __NAKED__ void ConvertTReal32ToTRealX(void)
|
|
1230 |
{
|
|
1231 |
// Convert TReal32 in edx to TRealX in ecx:edx,ebx
|
|
1232 |
asm("xor ebx, ebx"); // mant low always zero
|
|
1233 |
asm("mov eax, edx");
|
|
1234 |
asm("shr eax, 23"); // exponent now in al, sign in ah bit 0
|
|
1235 |
asm("test al, al"); // check for denormal/zero
|
|
1236 |
asm("jz short treal32totrealx2"); // branch if denormal/zero
|
|
1237 |
asm("xor ecx, ecx");
|
|
1238 |
asm("mov cl, al");
|
|
1239 |
asm("add ecx, 0x7F80"); // bias exponent correctly for TRealX
|
|
1240 |
asm("cmp al, 0xFF"); // check for infinity/NaN
|
|
1241 |
asm("jnz short treal32totrealx1"); // skip if neither
|
|
1242 |
asm("mov cl, al"); // else set TRealX exponent to FFFF
|
|
1243 |
asm("mov ch, al");
|
|
1244 |
asm("treal32totrealx1:");
|
|
1245 |
asm("shl edx, 8"); // left-justify mantissa in edx
|
|
1246 |
asm("or edx, 0x80000000"); // put in implied integer bit
|
|
1247 |
asm("shl ecx, 16"); // exponent into ecx bits 16-31
|
|
1248 |
asm("mov cl, ah"); // sign into ecx bit 0
|
|
1249 |
asm("ret");
|
|
1250 |
asm("treal32totrealx2:"); // come here if exponent 0
|
|
1251 |
asm("shl edx, 9"); // left-justify mantissa in edx [shift out integer bit as well]
|
|
1252 |
asm("jnz short treal32totrealx3"); // jump if denormal
|
|
1253 |
asm("xor ecx, ecx"); // else return 0
|
|
1254 |
asm("mov cl, ah"); // with same sign as input value
|
|
1255 |
asm("ret");
|
|
1256 |
asm("treal32totrealx3:"); // come here if denormal
|
|
1257 |
asm("bsr ecx, edx"); // ecx=bit number of MSB of edx
|
|
1258 |
asm("neg ecx");
|
|
1259 |
asm("add ecx, 31"); // ecx=number of left shifts to normalise edx
|
|
1260 |
asm("shl edx, cl"); // normalise
|
|
1261 |
asm("neg ecx");
|
|
1262 |
asm("add ecx, 0x7F80"); // exponent=7F80-number of shifts
|
|
1263 |
asm("shl ecx, 16"); // exponent into ecx bits 16-31
|
|
1264 |
asm("mov cl, ah"); // sign into ecx bit 0
|
|
1265 |
asm("ret");
|
|
1266 |
}
|
|
1267 |
|
|
1268 |
|
|
1269 |
|
|
1270 |
|
|
1271 |
LOCAL_C __NAKED__ void ConvertTReal64ToTRealX(void)
|
|
1272 |
{
|
|
1273 |
// Convert TReal64 in edx:ebx to TRealX in ecx:edx,ebx
|
|
1274 |
asm("mov eax, edx");
|
|
1275 |
asm("shr eax, 20");
|
|
1276 |
asm("mov ecx, 0x7FF");
|
|
1277 |
asm("and ecx, eax"); // ecx=exponent
|
|
1278 |
asm("jz short treal64totrealx1"); // branch if zero/denormal
|
|
1279 |
asm("add ecx, 0x7C00"); // else bias exponent correctly for TRealX
|
|
1280 |
asm("cmp ecx, 0x83FF"); // check for infinity/NaN
|
|
1281 |
asm("jnz short treal64totrealx2");
|
|
1282 |
asm("mov ch, cl"); // if so, set exponent to FFFF
|
|
1283 |
asm("treal64totrealx2:");
|
|
1284 |
asm("shl ecx, 16"); // exponent into ecx bits 16-31
|
|
1285 |
asm("mov cl, 11"); // number of shifts needed to justify mantissa correctly
|
|
1286 |
asm("shld edx, ebx, cl"); // shift mantissa left
|
|
1287 |
asm("shl ebx, cl");
|
|
1288 |
asm("or edx, 0x80000000"); // put in implied integer bit
|
|
1289 |
asm("shr eax, 11"); // sign bit into al bit 0
|
|
1290 |
asm("mov cl, al"); // into ecx bit 0
|
|
1291 |
asm("ret");
|
|
1292 |
asm("treal64totrealx1:"); // come here if zero/denormal
|
|
1293 |
asm("mov cl, 12"); // number of shifts needed to justify mantissa correctly
|
|
1294 |
asm("shld edx, ebx, cl"); // shift mantissa left
|
|
1295 |
asm("shl ebx, cl");
|
|
1296 |
asm("test edx, edx"); // check for zero
|
|
1297 |
asm("jnz short treal64totrealx3");
|
|
1298 |
asm("test ebx, ebx");
|
|
1299 |
asm("jnz short treal64totrealx4");
|
|
1300 |
asm("shr eax, 11"); // sign bit into eax bit 0, rest of eax=0
|
|
1301 |
asm("mov ecx, eax"); // return 0 result with correct sign
|
|
1302 |
asm("ret");
|
|
1303 |
asm("treal64totrealx4:"); // come here if denormal, edx=0
|
|
1304 |
asm("mov edx, ebx"); // shift mantissa left 32
|
|
1305 |
asm("xor ebx, ebx");
|
|
1306 |
asm("bsr ecx, edx"); // ecx=bit number of MSB of edx
|
|
1307 |
asm("neg ecx");
|
|
1308 |
asm("add ecx, 31"); // ecx=number of left shifts to normalise edx
|
|
1309 |
asm("shl edx, cl"); // normalise
|
|
1310 |
asm("neg ecx");
|
|
1311 |
asm("add ecx, 0x7BE0"); // exponent=7BE0-number of shifts
|
|
1312 |
asm("shl ecx, 16"); // exponent into bits 16-31 of ecx
|
|
1313 |
asm("shr eax, 11");
|
|
1314 |
asm("mov cl, al"); // sign into bit 0 of ecx
|
|
1315 |
asm("ret");
|
|
1316 |
asm("treal64totrealx3:"); // come here if denormal, edx nonzero
|
|
1317 |
asm("bsr ecx, edx"); // ecx=bit number of MSB of edx
|
|
1318 |
asm("neg ecx");
|
|
1319 |
asm("add ecx, 31"); // ecx=number of left shifts to normalise edx:ebx
|
|
1320 |
asm("shld edx, ebx, cl"); // normalise
|
|
1321 |
asm("shl ebx, cl");
|
|
1322 |
asm("neg ecx");
|
|
1323 |
asm("add ecx, 0x7C00"); // exponent=7C00-number of shifts
|
|
1324 |
asm("shl ecx, 16"); // exponent into bits 16-31 of ecx
|
|
1325 |
asm("shr eax, 11");
|
|
1326 |
asm("mov cl, al"); // sign into bit 0 of ecx
|
|
1327 |
asm("ret");
|
|
1328 |
}
|
|
1329 |
|
|
1330 |
|
|
1331 |
|
|
1332 |
|
|
1333 |
__NAKED__ EXPORT_C TInt TRealX::Set(TReal32 /*aReal*/)
|
|
1334 |
/**
|
|
1335 |
Gives this extended precision object a new value taken from
|
|
1336 |
a single precision floating point number.
|
|
1337 |
|
|
1338 |
@param aReal The single precision floating point value.
|
|
1339 |
|
|
1340 |
@return KErrNone, if a valid number;
|
|
1341 |
KErrOverflow, if the number is infinite;
|
|
1342 |
KErrArgument, if not a number.
|
|
1343 |
*/
|
|
1344 |
{
|
|
1345 |
// on entry, ecx=this and aReal is in [esp+4]
|
|
1346 |
// on exit, error code in eax
|
|
1347 |
THISCALL_PROLOG1()
|
|
1348 |
asm("push ecx");
|
|
1349 |
asm("push ebx"); // save ebx
|
|
1350 |
asm("push ecx"); // save this
|
|
1351 |
asm("mov edx, [esp+16]"); // aReal into edx
|
|
1352 |
asm("call %a0": : "i"(&ConvertTReal32ToTRealX));
|
|
1353 |
asm("pop eax"); // eax=this
|
|
1354 |
asm("mov [eax], ebx"); // store result
|
|
1355 |
asm("mov [eax+4], edx");
|
|
1356 |
asm("mov [eax+8], ecx");
|
|
1357 |
asm("xor eax, eax"); // error code=KErrNone initially
|
|
1358 |
asm("cmp ecx, 0xFFFF0000"); // check for infinity/NaN
|
|
1359 |
asm("jb short trealxsettreal32a"); // if neither, return KErrNone
|
|
1360 |
asm("mov eax, -9"); // eax=KErrOverflow
|
|
1361 |
asm("cmp edx, 0x80000000"); // check for infinity
|
|
1362 |
asm("je short trealxsettreal32a"); // if infinity, return KErrOverflow
|
|
1363 |
asm("mov eax, -6"); // if NaN, return KErrArgument
|
|
1364 |
asm("trealxsettreal32a:");
|
|
1365 |
asm("pop ebx");
|
|
1366 |
asm("pop ecx");
|
|
1367 |
THISCALL_EPILOG1()
|
|
1368 |
}
|
|
1369 |
|
|
1370 |
|
|
1371 |
|
|
1372 |
|
|
1373 |
__NAKED__ EXPORT_C TInt TRealX::Set(TReal64 /*aReal*/)
|
|
1374 |
/**
|
|
1375 |
Gives this extended precision object a new value taken from
|
|
1376 |
a double precision floating point number.
|
|
1377 |
|
|
1378 |
@param aReal The double precision floating point value.
|
|
1379 |
|
|
1380 |
@return KErrNone, if a valid number;
|
|
1381 |
KErrOverflow, if the number is infinite;
|
|
1382 |
KErrArgument, if not a number.
|
|
1383 |
*/
|
|
1384 |
{
|
|
1385 |
// on entry, ecx=this and aReal is in [esp+4] (mant low) and [esp+8] (sign/exp/mant high)
|
|
1386 |
// on exit, error code in eax
|
|
1387 |
THISCALL_PROLOG2()
|
|
1388 |
asm("push ecx");
|
|
1389 |
asm("push ebx"); // save ebx
|
|
1390 |
asm("push ecx"); // save this
|
|
1391 |
asm("mov ebx, [esp+16]"); // aReal into edx:ebx
|
|
1392 |
asm("mov edx, [esp+20]");
|
|
1393 |
asm("call %a0": : "i"(&ConvertTReal64ToTRealX));
|
|
1394 |
asm("pop eax"); // eax=this
|
|
1395 |
asm("mov [eax], ebx"); // store result
|
|
1396 |
asm("mov [eax+4], edx");
|
|
1397 |
asm("mov [eax+8], ecx");
|
|
1398 |
asm("xor eax, eax"); // error code=KErrNone initially
|
|
1399 |
asm("cmp ecx, 0xFFFF0000"); // check for infinity/NaN
|
|
1400 |
asm("jb short trealxsettreal64a"); // if neither, return KErrNone
|
|
1401 |
asm("mov eax, -9"); // eax=KErrOverflow
|
|
1402 |
asm("cmp edx, 0x80000000"); // check for infinity
|
|
1403 |
asm("jne short trealxsettreal64b"); // branch if NaN
|
|
1404 |
asm("test ebx, ebx");
|
|
1405 |
asm("je short trealxsettreal64a"); // if infinity, return KErrOverflow
|
|
1406 |
asm("trealxsettreal64b:");
|
|
1407 |
asm("mov eax, -6"); // if NaN, return KErrArgument
|
|
1408 |
asm("trealxsettreal64a:");
|
|
1409 |
asm("pop ebx");
|
|
1410 |
asm("pop ecx");
|
|
1411 |
THISCALL_EPILOG2()
|
|
1412 |
}
|
|
1413 |
|
|
1414 |
|
|
1415 |
|
|
1416 |
|
|
1417 |
LOCAL_C __NAKED__ void __6TRealXf()
|
|
1418 |
{
|
|
1419 |
// common function for float to TRealX
|
|
1420 |
THISCALL_PROLOG1()
|
|
1421 |
asm("push ebx"); // save ebx
|
|
1422 |
asm("push ecx"); // save this
|
|
1423 |
asm("mov edx, [esp+12]"); // aReal into edx
|
|
1424 |
asm("call %a0": : "i"(&ConvertTReal32ToTRealX));
|
|
1425 |
asm("pop eax"); // eax=this
|
|
1426 |
asm("mov [eax], ebx"); // store result
|
|
1427 |
asm("mov [eax+4], edx");
|
|
1428 |
asm("mov [eax+8], ecx");
|
|
1429 |
asm("pop ebx");
|
|
1430 |
asm("mov ecx,eax");
|
|
1431 |
THISCALL_EPILOG1()
|
|
1432 |
}
|
|
1433 |
|
|
1434 |
|
|
1435 |
|
|
1436 |
|
|
1437 |
__NAKED__ EXPORT_C TRealX::TRealX(TReal32 /*aReal*/)
|
|
1438 |
/**
|
|
1439 |
Constructs an extended precision object from
|
|
1440 |
a single precision floating point number.
|
|
1441 |
|
|
1442 |
@param aReal The single precision floating point value.
|
|
1443 |
*/
|
|
1444 |
{
|
|
1445 |
// on entry, ecx=this and aReal is in [esp+4]
|
|
1446 |
// on exit, eax=this
|
|
1447 |
asm("jmp %a0": : "i"(&__6TRealXf));
|
|
1448 |
}
|
|
1449 |
|
|
1450 |
|
|
1451 |
|
|
1452 |
|
|
1453 |
__NAKED__ EXPORT_C TRealX& TRealX::operator=(TReal32 /*aReal*/)
|
|
1454 |
/**
|
|
1455 |
Assigns the specified single precision floating point number to
|
|
1456 |
this extended precision object.
|
|
1457 |
|
|
1458 |
@param aReal The single precision floating point value.
|
|
1459 |
|
|
1460 |
@return A reference to this extended precision object.
|
|
1461 |
*/
|
|
1462 |
{
|
|
1463 |
// on entry, ecx=this and aReal is in [esp+4]
|
|
1464 |
// on exit, eax=this
|
|
1465 |
asm("jmp %a0": : "i"(&__6TRealXf));
|
|
1466 |
}
|
|
1467 |
|
|
1468 |
|
|
1469 |
|
|
1470 |
|
|
1471 |
LOCAL_C __NAKED__ void __6TRealXd()
|
|
1472 |
{
|
|
1473 |
// common function for double to TRealX
|
|
1474 |
THISCALL_PROLOG2()
|
|
1475 |
asm("push ebx"); // save ebx
|
|
1476 |
asm("push ecx"); // save this
|
|
1477 |
asm("mov ebx, [esp+12]"); // aReal into edx:ebx
|
|
1478 |
asm("mov edx, [esp+16]");
|
|
1479 |
asm("call %a0": : "i"(&ConvertTReal64ToTRealX));
|
|
1480 |
asm("pop eax"); // eax=this
|
|
1481 |
asm("mov [eax], ebx"); // store result
|
|
1482 |
asm("mov [eax+4], edx");
|
|
1483 |
asm("mov [eax+8], ecx");
|
|
1484 |
asm("pop ebx");
|
|
1485 |
asm("mov ecx,eax");
|
|
1486 |
THISCALL_EPILOG2()
|
|
1487 |
}
|
|
1488 |
|
|
1489 |
|
|
1490 |
|
|
1491 |
|
|
1492 |
__NAKED__ EXPORT_C TRealX::TRealX(TReal64 /*aReal*/)
|
|
1493 |
/**
|
|
1494 |
Constructs an extended precision object from
|
|
1495 |
a double precision floating point number.
|
|
1496 |
|
|
1497 |
@param aReal The double precision floating point value.
|
|
1498 |
*/
|
|
1499 |
{
|
|
1500 |
// on entry, ecx=this and aReal is in [esp+4] (mant low) and [esp+8] (sign/exp/mant high)
|
|
1501 |
// on exit, eax=this
|
|
1502 |
asm("jmp %a0": : "i"(&__6TRealXd));
|
|
1503 |
}
|
|
1504 |
|
|
1505 |
|
|
1506 |
|
|
1507 |
|
|
1508 |
__NAKED__ EXPORT_C TRealX& TRealX::operator=(TReal64 /*aReal*/)
|
|
1509 |
/**
|
|
1510 |
Assigns the specified double precision floating point number to
|
|
1511 |
this extended precision object.
|
|
1512 |
|
|
1513 |
@param aReal The double precision floating point value.
|
|
1514 |
|
|
1515 |
@return A reference to this extended precision object.
|
|
1516 |
*/
|
|
1517 |
{
|
|
1518 |
// on entry, ecx=this and aReal is in [esp+4] (mant low) and [esp+8] (sign/exp/mant high)
|
|
1519 |
// on exit, eax=this
|
|
1520 |
asm("jmp %a0": : "i"(&__6TRealXd));
|
|
1521 |
}
|
|
1522 |
|
|
1523 |
|
|
1524 |
|
|
1525 |
|
|
1526 |
__NAKED__ EXPORT_C TRealX::operator TInt() const
|
|
1527 |
/**
|
|
1528 |
Gets the extended precision value as a signed integer value.
|
|
1529 |
|
|
1530 |
The operator asm("returns:");
|
|
1531 |
|
|
1532 |
1. zero , if the extended precision value is not a number
|
|
1533 |
|
|
1534 |
2. 0x7FFFFFFF, if the value is positive and too big to fit into a TInt.
|
|
1535 |
|
|
1536 |
3. 0x80000000, if the value is negative and too big to fit into a TInt.
|
|
1537 |
*/
|
|
1538 |
{
|
|
1539 |
// on entry ecx=this, return value in eax
|
|
1540 |
THISCALL_PROLOG0()
|
|
1541 |
asm("push ecx");
|
|
1542 |
asm("mov edx, [ecx]"); // edx=mantissa low
|
|
1543 |
asm("mov eax, [ecx+4]"); // eax=mantissa high
|
|
1544 |
asm("mov ecx, [ecx+8]"); // ecx=exponent/sign
|
|
1545 |
asm("ror ecx, 16"); // exponent into cx
|
|
1546 |
asm("cmp cx, 0xFFFF");
|
|
1547 |
asm("jz short trealxtoint1"); // branch if exp=FFFF
|
|
1548 |
asm("mov dx, cx");
|
|
1549 |
asm("mov cx, 0x801E");
|
|
1550 |
asm("sub cx, dx"); // cx=number of right shifts needed to convert mantissa to int
|
|
1551 |
asm("jbe short trealxtoint2"); // if exp>=801E, saturate result
|
|
1552 |
asm("cmp cx, 31"); // more than 31 shifts needed?
|
|
1553 |
asm("ja short trealxtoint0"); // if so, underflow to zero
|
|
1554 |
asm("shr eax, cl"); // else ABS[result]=eax>>cl
|
|
1555 |
asm("test ecx, 0x10000"); // test sign
|
|
1556 |
asm("jz short trealxtoint3"); // skip if +
|
|
1557 |
asm("neg eax");
|
|
1558 |
asm("trealxtoint3:");
|
|
1559 |
asm("pop ecx");
|
|
1560 |
THISCALL_EPILOG0()
|
|
1561 |
asm("trealxtoint1:"); // come here if exponent=FFFF
|
|
1562 |
asm("cmp eax, 0x80000000"); // check for infinity
|
|
1563 |
asm("jnz short trealxtoint0"); // if NaN, return 0
|
|
1564 |
asm("test edx, edx");
|
|
1565 |
asm("jnz short trealxtoint0"); // if NaN, return 0
|
|
1566 |
asm("trealxtoint2:"); // come here if argument too big for 32-bit integer
|
|
1567 |
asm("mov eax, 0x7FFFFFFF");
|
|
1568 |
asm("shr ecx, 17"); // sign bit into carry flag
|
|
1569 |
asm("adc eax, 0"); // eax=7FFFFFFF if +, 80000000 if -
|
|
1570 |
asm("pop ecx");
|
|
1571 |
THISCALL_EPILOG0() // return saturated value
|
|
1572 |
asm("trealxtoint0:"); // come here if INT{argument}=0 or NaN
|
|
1573 |
asm("xor eax, eax"); // return 0
|
|
1574 |
asm("pop ecx");
|
|
1575 |
THISCALL_EPILOG0()
|
|
1576 |
}
|
|
1577 |
|
|
1578 |
|
|
1579 |
|
|
1580 |
|
|
1581 |
__NAKED__ EXPORT_C TRealX::operator TUint() const
|
|
1582 |
/**
|
|
1583 |
Returns the extended precision value as an unsigned signed integer value.
|
|
1584 |
|
|
1585 |
The operator asm("returns:");
|
|
1586 |
|
|
1587 |
1. zero, if the extended precision value is not a number
|
|
1588 |
|
|
1589 |
2. 0xFFFFFFFF, if the value is positive and too big to fit into a TUint.
|
|
1590 |
|
|
1591 |
3. zero, if the value is negative and too big to fit into a TUint.
|
|
1592 |
*/
|
|
1593 |
{
|
|
1594 |
// on entry ecx=this, return value in eax
|
|
1595 |
THISCALL_PROLOG0()
|
|
1596 |
asm("push ecx");
|
|
1597 |
asm("mov edx, [ecx]"); // edx=mantissa low
|
|
1598 |
asm("mov eax, [ecx+4]"); // eax=mantissa high
|
|
1599 |
asm("mov ecx, [ecx+8]"); // ecx=exponent/sign
|
|
1600 |
asm("ror ecx, 16"); // exponent into cx
|
|
1601 |
asm("cmp cx, 0xFFFF");
|
|
1602 |
asm("jz short trealxtouint1"); // branch if exp=FFFF
|
|
1603 |
asm("mov dx, cx");
|
|
1604 |
asm("mov cx, 0x801E");
|
|
1605 |
asm("sub cx, dx"); // cx=number of right shifts needed to convert mantissa to int
|
|
1606 |
asm("jb short trealxtouint2"); // if exp>801E, saturate result
|
|
1607 |
asm("cmp cx, 31"); // more than 31 shifts needed?
|
|
1608 |
asm("ja short trealxtouint0"); // if so, underflow to zero
|
|
1609 |
asm("test ecx, 0x10000"); // test sign
|
|
1610 |
asm("jnz short trealxtouint0"); // if -, return 0
|
|
1611 |
asm("shr eax, cl"); // else result=eax>>cl
|
|
1612 |
asm("pop ecx");
|
|
1613 |
THISCALL_EPILOG0()
|
|
1614 |
asm("trealxtouint1:"); // come here if exponent=FFFF
|
|
1615 |
asm("cmp eax, 0x80000000"); // check for infinity
|
|
1616 |
asm("jnz short trealxtouint0"); // if NaN, return 0
|
|
1617 |
asm("test edx, edx");
|
|
1618 |
asm("jnz short trealxtouint0"); // if NaN, return 0
|
|
1619 |
asm("trealxtouint2:"); // come here if argument too big for 32-bit integer
|
|
1620 |
asm("mov eax, 0xFFFFFFFF");
|
|
1621 |
asm("shr ecx, 17"); // sign bit into carry flag
|
|
1622 |
asm("adc eax, 0"); // eax=FFFFFFFF if +, 0 if -
|
|
1623 |
asm("pop ecx");
|
|
1624 |
THISCALL_EPILOG0() // return saturated value
|
|
1625 |
asm("trealxtouint0:"); // come here if INT{argument}=0 or NaN
|
|
1626 |
asm("xor eax, eax"); // return 0
|
|
1627 |
asm("pop ecx");
|
|
1628 |
THISCALL_EPILOG0()
|
|
1629 |
}
|
|
1630 |
|
|
1631 |
|
|
1632 |
|
|
1633 |
|
|
1634 |
LOCAL_C __NAKED__ void ConvertTRealXToTInt64(void)
|
|
1635 |
{
|
|
1636 |
// Convert TRealX in ecx,edx:ebx to TInt64 in edx:ebx
|
|
1637 |
asm("ror ecx, 16"); // exponent into cx
|
|
1638 |
asm("cmp cx, 0xFFFF");
|
|
1639 |
asm("jz short trealxtoint64a"); // branch if exp=FFFF
|
|
1640 |
asm("mov ax, cx");
|
|
1641 |
asm("mov cx, 0x803E");
|
|
1642 |
asm("sub cx, ax"); // cx=number of right shifts needed to convert mantissa to int
|
|
1643 |
asm("jbe short trealxtoint64b"); // if exp>=803E, saturate result
|
|
1644 |
asm("cmp cx, 63"); // more than 63 shifts needed?
|
|
1645 |
asm("ja short trealxtoint64z"); // if so, underflow to zero
|
|
1646 |
asm("cmp cl, 31"); // more than 31 shifts needed?
|
|
1647 |
asm("jbe short trealxtoint64d"); // branch if not
|
|
1648 |
asm("sub cl, 32"); // cl=shift count - 32
|
|
1649 |
asm("mov ebx, edx"); // shift right by 32
|
|
1650 |
asm("xor edx, edx");
|
|
1651 |
asm("trealxtoint64d:");
|
|
1652 |
asm("shrd ebx, edx, cl"); // shift edx:ebx right by cl to give ABS{result}
|
|
1653 |
asm("shr edx, cl");
|
|
1654 |
asm("test ecx, 0x10000"); // test sign
|
|
1655 |
asm("jz short trealxtoint64c"); // skip if +
|
|
1656 |
asm("neg edx"); // if -, negate
|
|
1657 |
asm("neg ebx");
|
|
1658 |
asm("sbb edx, 0");
|
|
1659 |
asm("trealxtoint64c:");
|
|
1660 |
asm("ret");
|
|
1661 |
asm("trealxtoint64a:"); // come here if exponent=FFFF
|
|
1662 |
asm("cmp edx, 0x80000000"); // check for infinity
|
|
1663 |
asm("jnz short trealxtoint64z"); // if NaN, return 0
|
|
1664 |
asm("test ebx, ebx");
|
|
1665 |
asm("jnz short trealxtoint64z"); // if NaN, return 0
|
|
1666 |
asm("trealxtoint64b:"); // come here if argument too big for 32-bit integer
|
|
1667 |
asm("mov edx, 0x7FFFFFFF");
|
|
1668 |
asm("mov ebx, 0xFFFFFFFF");
|
|
1669 |
asm("shr ecx, 17"); // sign bit into carry flag
|
|
1670 |
asm("adc ebx, 0"); // edx:ebx=7FFFFFFF FFFFFFFF if +,
|
|
1671 |
asm("adc edx, 0"); // or 80000000 00000000 if -
|
|
1672 |
asm("ret"); // return saturated value
|
|
1673 |
asm("trealxtoint64z:"); // come here if INT{argument}=0 or NaN
|
|
1674 |
asm("xor edx, edx"); // return 0
|
|
1675 |
asm("xor ebx, ebx");
|
|
1676 |
asm("ret");
|
|
1677 |
}
|
|
1678 |
|
|
1679 |
|
|
1680 |
|
|
1681 |
|
|
1682 |
/**
|
|
1683 |
Returns the extended precision value as a 64 bit integer value.
|
|
1684 |
|
|
1685 |
The operator asm("returns:");
|
|
1686 |
|
|
1687 |
1. zero, if the extended precision value is not a number
|
|
1688 |
|
|
1689 |
2. 0x7FFFFFFF FFFFFFFF, if the value is positive and too big to fit
|
|
1690 |
into a TInt64
|
|
1691 |
|
|
1692 |
3. 0x80000000 00000000, if the value is negative and too big to fit
|
|
1693 |
into a TInt.
|
|
1694 |
*/
|
|
1695 |
__NAKED__ EXPORT_C TRealX::operator TInt64() const
|
|
1696 |
{
|
|
1697 |
// on entry, ecx=this, return value in edx:eax
|
|
1698 |
THISCALL_PROLOG0()
|
|
1699 |
asm("push ecx");
|
|
1700 |
asm("push ebx");
|
|
1701 |
asm("mov ebx, [ecx]"); // get TRealX value into ecx,edx:ebx
|
|
1702 |
asm("mov edx, [ecx+4]");
|
|
1703 |
asm("mov ecx, [ecx+8]");
|
|
1704 |
asm("call %a0": : "i"(&ConvertTRealXToTInt64));
|
|
1705 |
asm("mov eax, ebx"); // result low into eax
|
|
1706 |
asm("pop ebx");
|
|
1707 |
asm("pop ecx");
|
|
1708 |
THISCALL_EPILOG0()
|
|
1709 |
}
|
|
1710 |
|
|
1711 |
|
|
1712 |
|
|
1713 |
|
|
1714 |
LOCAL_C __NAKED__ void TRealXGetTReal32(void)
|
|
1715 |
{
|
|
1716 |
// Convert TRealX in ecx,edx:ebx to TReal32 in edx
|
|
1717 |
// Return error code in eax
|
|
1718 |
asm("cmp ecx, 0xFFFF0000"); // check for infinity/NaN
|
|
1719 |
asm("jnc short trealxgettreal32a");
|
|
1720 |
asm("xor eax, eax");
|
|
1721 |
asm("ror ecx, 16"); // exponent into cx
|
|
1722 |
asm("sub cx, 0x7F80"); // cx=result exponent if normalised
|
|
1723 |
asm("jbe short trealxgettreal32b"); // jump if denormal, zero or underflow
|
|
1724 |
asm("cmp cx, 0xFF"); // check if overflow
|
|
1725 |
asm("jb short trealxgettreal32c"); // jump if not
|
|
1726 |
asm("trealxgettreal32d:"); // come here if overflow
|
|
1727 |
asm("xor edx, edx"); // set mantissa=0 to generate infinity
|
|
1728 |
asm("ror ecx, 16"); // ecx back to normal format
|
|
1729 |
asm("trealxgettreal32a:"); // come here if infinity or NaN
|
|
1730 |
asm("shr edx, 7");
|
|
1731 |
asm("or edx, 0xFF000000"); // set exponent to FF
|
|
1732 |
asm("shr ecx, 1"); // sign bit -> carry
|
|
1733 |
asm("rcr edx, 1"); // sign bit -> MSB of result
|
|
1734 |
asm("mov eax, edx");
|
|
1735 |
asm("shl eax, 9"); // test for infinity or NaN
|
|
1736 |
asm("mov eax, -9"); // eax=KErrOverflow
|
|
1737 |
asm("jz short trealxgettreal32e");
|
|
1738 |
asm("mov eax, -6"); // if NaN, eax=KErrArgument
|
|
1739 |
asm("trealxgettreal32e:");
|
|
1740 |
asm("ret");
|
|
1741 |
asm("trealxgettreal32b:"); // come here if exponent<=7F80
|
|
1742 |
asm("cmp cx, -24"); // check for zero or total underflow
|
|
1743 |
asm("jle short trealxgettreal32z");
|
|
1744 |
asm("neg cl");
|
|
1745 |
asm("inc cl"); // cl=number of right shifts to form denormal mantissa
|
|
1746 |
asm("shrd eax, ebx, cl"); // shift mantissa right into eax
|
|
1747 |
asm("shrd ebx, edx, cl");
|
|
1748 |
asm("shr edx, cl");
|
|
1749 |
asm("or edx, 0x80000000"); // set top bit to ensure correct rounding up
|
|
1750 |
asm("xor cl, cl"); // cl=result exponent=0
|
|
1751 |
asm("trealxgettreal32c:"); // come here if result normalised
|
|
1752 |
asm("cmp dl, 0x80"); // check rounding bits
|
|
1753 |
asm("ja short trealxgettreal32f"); // branch to round up
|
|
1754 |
asm("jb short trealxgettreal32g"); // branch to round down
|
|
1755 |
asm("test ebx, ebx");
|
|
1756 |
asm("jnz short trealxgettreal32f"); // branch to round up
|
|
1757 |
asm("test eax, eax");
|
|
1758 |
asm("jnz short trealxgettreal32f"); // branch to round up
|
|
1759 |
asm("test ecx, 0x01000000"); // check rounded-down flag
|
|
1760 |
asm("jnz short trealxgettreal32f"); // branch to round up
|
|
1761 |
asm("test ecx, 0x02000000"); // check rounded-up flag
|
|
1762 |
asm("jnz short trealxgettreal32g"); // branch to round down
|
|
1763 |
asm("test dh, 1"); // else round to even
|
|
1764 |
asm("jz short trealxgettreal32g"); // branch to round down if LSB=0
|
|
1765 |
asm("trealxgettreal32f:"); // come here to round up
|
|
1766 |
asm("add edx, 0x100"); // increment mantissa
|
|
1767 |
asm("jnc short trealxgettreal32g");
|
|
1768 |
asm("rcr edx, 1");
|
|
1769 |
asm("inc cl"); // if carry, increment exponent
|
|
1770 |
asm("cmp cl, 0xFF"); // and check for overflow
|
|
1771 |
asm("jz short trealxgettreal32d"); // branch out if overflow
|
|
1772 |
asm("trealxgettreal32g:"); // come here to round down
|
|
1773 |
asm("xor dl, dl");
|
|
1774 |
asm("add edx, edx"); // shift out integer bit
|
|
1775 |
asm("mov dl, cl");
|
|
1776 |
asm("ror edx, 8"); // exponent->edx bits 24-31, mantissa in 23-1
|
|
1777 |
asm("test edx, edx"); // check if underflow
|
|
1778 |
asm("jz short trealxgettreal32h"); // branch out if underflow
|
|
1779 |
asm("shr ecx, 17"); // sign bit->carry
|
|
1780 |
asm("rcr edx, 1"); // ->edx bit 31, exp->edx bits 23-30, mant->edx bits 22-0
|
|
1781 |
asm("xor eax, eax"); // return KErrNone
|
|
1782 |
asm("ret");
|
|
1783 |
asm("trealxgettreal32z:"); // come here if zero or underflow
|
|
1784 |
asm("xor eax, eax");
|
|
1785 |
asm("cmp cx, 0x8080"); // check for zero
|
|
1786 |
asm("jz short trealxgettreal32y"); // if zero, return KErrNone
|
|
1787 |
asm("trealxgettreal32h:"); // come here if underflow after rounding
|
|
1788 |
asm("mov eax, -10"); // eax=KErrUnderflow
|
|
1789 |
asm("trealxgettreal32y:");
|
|
1790 |
asm("xor edx, edx");
|
|
1791 |
asm("shr ecx, 17");
|
|
1792 |
asm("rcr edx, 1"); // sign bit into edx bit 31, rest of edx=0
|
|
1793 |
asm("ret");
|
|
1794 |
}
|
|
1795 |
|
|
1796 |
|
|
1797 |
|
|
1798 |
|
|
1799 |
LOCAL_C __NAKED__ void TRealXGetTReal64(void)
|
|
1800 |
{
|
|
1801 |
// Convert TRealX in ecx,edx:ebx to TReal64 in edx:ebx
|
|
1802 |
// Return error code in eax
|
|
1803 |
// edi, esi also modified
|
|
1804 |
asm("ror ecx, 16"); // exponent into cx
|
|
1805 |
asm("cmp cx, 0xFFFF"); // check for infinity/NaN
|
|
1806 |
asm("jnc short trealxgettreal64a");
|
|
1807 |
asm("xor eax, eax");
|
|
1808 |
asm("xor edi, edi");
|
|
1809 |
asm("sub cx, 0x7C00"); // cx=result exponent if normalised
|
|
1810 |
asm("jbe short trealxgettreal64b"); // jump if denormal, zero or underflow
|
|
1811 |
asm("cmp cx, 0x07FF"); // check if overflow
|
|
1812 |
asm("jb short trealxgettreal64c"); // jump if not
|
|
1813 |
asm("trealxgettreal64d:"); // come here if overflow
|
|
1814 |
asm("xor edx, edx"); // set mantissa=0 to generate infinity
|
|
1815 |
asm("xor ebx, ebx");
|
|
1816 |
asm("trealxgettreal64a:"); // come here if infinity or NaN
|
|
1817 |
asm("mov cl, 10");
|
|
1818 |
asm("shrd ebx, edx, cl");
|
|
1819 |
asm("shr edx, cl");
|
|
1820 |
asm("or edx, 0xFFE00000"); // set exponent to 7FF
|
|
1821 |
asm("shr ecx, 17"); // sign bit -> carry
|
|
1822 |
asm("rcr edx, 1"); // sign bit -> MSB of result
|
|
1823 |
asm("rcr ebx, 1");
|
|
1824 |
asm("mov eax, edx");
|
|
1825 |
asm("shl eax, 12"); // test for infinity or NaN
|
|
1826 |
asm("mov eax, -9"); // eax=KErrOverflow
|
|
1827 |
asm("jnz short trealxgettreal64n");
|
|
1828 |
asm("test ebx, ebx");
|
|
1829 |
asm("jz short trealxgettreal64e");
|
|
1830 |
asm("trealxgettreal64n:");
|
|
1831 |
asm("mov eax, -6"); // if NaN, eax=KErrArgument
|
|
1832 |
asm("trealxgettreal64e:");
|
|
1833 |
asm("ret");
|
|
1834 |
asm("trealxgettreal64b:"); // come here if exponent<=7C00
|
|
1835 |
asm("cmp cx, -53"); // check for zero or total underflow
|
|
1836 |
asm("jle short trealxgettreal64z");
|
|
1837 |
asm("neg cl");
|
|
1838 |
asm("inc cl"); // cl=number of right shifts to form denormal mantissa
|
|
1839 |
asm("cmp cl, 32");
|
|
1840 |
asm("jb trealxgettreal64x");
|
|
1841 |
asm("mov eax, ebx"); // if >=32 shifts, do 32 shifts and decrement count by 32
|
|
1842 |
asm("mov ebx, edx");
|
|
1843 |
asm("xor edx, edx");
|
|
1844 |
asm("trealxgettreal64x:");
|
|
1845 |
asm("shrd edi, eax, cl");
|
|
1846 |
asm("shrd eax, ebx, cl"); // shift mantissa right into eax
|
|
1847 |
asm("shrd ebx, edx, cl");
|
|
1848 |
asm("shr edx, cl");
|
|
1849 |
asm("or edx, 0x80000000"); // set top bit to ensure correct rounding up
|
|
1850 |
asm("xor cx, cx"); // cx=result exponent=0
|
|
1851 |
asm("trealxgettreal64c:"); // come here if result normalised
|
|
1852 |
asm("mov esi, ebx");
|
|
1853 |
asm("and esi, 0x7FF"); // esi=rounding bits
|
|
1854 |
asm("cmp esi, 0x400"); // check rounding bits
|
|
1855 |
asm("ja short trealxgettreal64f"); // branch to round up
|
|
1856 |
asm("jb short trealxgettreal64g"); // branch to round down
|
|
1857 |
asm("test eax, eax");
|
|
1858 |
asm("jnz short trealxgettreal64f"); // branch to round up
|
|
1859 |
asm("test edi, edi");
|
|
1860 |
asm("jnz short trealxgettreal64f"); // branch to round up
|
|
1861 |
asm("test ecx, 0x01000000"); // check rounded-down flag
|
|
1862 |
asm("jnz short trealxgettreal64f"); // branch to round up
|
|
1863 |
asm("test ecx, 0x02000000"); // check rounded-up flag
|
|
1864 |
asm("jnz short trealxgettreal64g"); // branch to round down
|
|
1865 |
asm("test ebx, 0x800"); // else round to even
|
|
1866 |
asm("jz short trealxgettreal64g"); // branch to round down if LSB=0
|
|
1867 |
asm("trealxgettreal64f:"); // come here to round up
|
|
1868 |
asm("add ebx, 0x800"); // increment mantissa
|
|
1869 |
asm("adc edx, 0");
|
|
1870 |
asm("jnc short trealxgettreal64g");
|
|
1871 |
asm("rcr edx, 1");
|
|
1872 |
asm("inc cx"); // if carry, increment exponent
|
|
1873 |
asm("cmp cx, 0x7FF"); // and check for overflow
|
|
1874 |
asm("jz short trealxgettreal64d"); // branch out if overflow
|
|
1875 |
asm("trealxgettreal64g:"); // come here to round down
|
|
1876 |
asm("xor bl, bl"); // clear rounding bits
|
|
1877 |
asm("and bh, 0xF8");
|
|
1878 |
asm("mov di, cx"); // save exponent
|
|
1879 |
asm("mov cl, 10");
|
|
1880 |
asm("and edx, 0x7FFFFFFF"); // clear integer bit
|
|
1881 |
asm("shrd ebx, edx, cl"); // shift mantissa right by 10
|
|
1882 |
asm("shr edx, cl");
|
|
1883 |
asm("shl edi, 21"); // exponent into edi bits 21-31
|
|
1884 |
asm("or edx, edi"); // into edx bits 21-31
|
|
1885 |
asm("test edx, edx"); // check if underflow
|
|
1886 |
asm("jnz short trealxgettreal64i");
|
|
1887 |
asm("test ebx, ebx");
|
|
1888 |
asm("jz short trealxgettreal64h"); // branch out if underflow
|
|
1889 |
asm("trealxgettreal64i:");
|
|
1890 |
asm("shr ecx, 17"); // sign bit->carry
|
|
1891 |
asm("rcr edx, 1"); // ->edx bit 31, exp->edx bits 20-30, mant->edx bits 20-0
|
|
1892 |
asm("rcr ebx, 1");
|
|
1893 |
asm("xor eax, eax"); // return KErrNone
|
|
1894 |
asm("ret");
|
|
1895 |
asm("trealxgettreal64z:"); // come here if zero or underflow
|
|
1896 |
asm("xor eax, eax");
|
|
1897 |
asm("cmp cx, 0x8400"); // check for zero
|
|
1898 |
asm("jz short trealxgettreal64y"); // if zero, return KErrNone
|
|
1899 |
asm("trealxgettreal64h:"); // come here if underflow after rounding
|
|
1900 |
asm("mov eax, -10"); // eax=KErrUnderflow
|
|
1901 |
asm("trealxgettreal64y:");
|
|
1902 |
asm("xor edx, edx");
|
|
1903 |
asm("xor ebx, ebx");
|
|
1904 |
asm("shr ecx, 17");
|
|
1905 |
asm("rcr edx, 1"); // sign bit into edx bit 31, rest of edx=0, ebx=0
|
|
1906 |
asm("ret");
|
|
1907 |
}
|
|
1908 |
|
|
1909 |
|
|
1910 |
|
|
1911 |
|
|
1912 |
__NAKED__ EXPORT_C TRealX::operator TReal32() const
|
|
1913 |
/**
|
|
1914 |
Returns the extended precision value as
|
|
1915 |
a single precision floating point value.
|
|
1916 |
*/
|
|
1917 |
{
|
|
1918 |
// On entry, ecx=this
|
|
1919 |
// On exit, TReal32 value on top of FPU stack
|
|
1920 |
THISCALL_PROLOG0()
|
|
1921 |
asm("push ecx");
|
|
1922 |
asm("push ebx");
|
|
1923 |
asm("mov ebx, [ecx]"); // *this into ecx,edx:ebx
|
|
1924 |
asm("mov edx, [ecx+4]");
|
|
1925 |
asm("mov ecx, [ecx+8]");
|
|
1926 |
asm("call %a0": : "i"(&TRealXGetTReal32)); // Convert to TReal32 in edx
|
|
1927 |
asm("push edx"); // push TReal32 onto stack
|
|
1928 |
asm("fld dword ptr [esp]"); // push TReal32 onto FPU stack
|
|
1929 |
asm("pop edx");
|
|
1930 |
asm("pop ebx");
|
|
1931 |
asm("pop ecx");
|
|
1932 |
THISCALL_EPILOG0()
|
|
1933 |
}
|
|
1934 |
|
|
1935 |
|
|
1936 |
|
|
1937 |
|
|
1938 |
__NAKED__ EXPORT_C TRealX::operator TReal64() const
|
|
1939 |
/**
|
|
1940 |
Returns the extended precision value as
|
|
1941 |
a double precision floating point value.
|
|
1942 |
*/
|
|
1943 |
{
|
|
1944 |
// On entry, ecx=this
|
|
1945 |
// On exit, TReal64 value on top of FPU stack
|
|
1946 |
THISCALL_PROLOG0()
|
|
1947 |
asm("push ecx");
|
|
1948 |
asm("push ebx");
|
|
1949 |
asm("push esi");
|
|
1950 |
asm("push edi");
|
|
1951 |
asm("mov ebx, [ecx]"); // *this into ecx,edx:ebx
|
|
1952 |
asm("mov edx, [ecx+4]");
|
|
1953 |
asm("mov ecx, [ecx+8]");
|
|
1954 |
asm("call %a0": : "i"(&TRealXGetTReal64)); // Convert to TReal32 in edx:ebx
|
|
1955 |
asm("push edx"); // push TReal64 onto stack
|
|
1956 |
asm("push ebx");
|
|
1957 |
asm("fld qword ptr [esp]"); // push TReal64 onto FPU stack
|
|
1958 |
asm("add esp, 8");
|
|
1959 |
asm("pop edi");
|
|
1960 |
asm("pop esi");
|
|
1961 |
asm("pop ebx");
|
|
1962 |
asm("pop ecx");
|
|
1963 |
THISCALL_EPILOG0()
|
|
1964 |
}
|
|
1965 |
|
|
1966 |
|
|
1967 |
|
|
1968 |
|
|
1969 |
__NAKED__ EXPORT_C TInt TRealX::GetTReal(TReal32& /*aVal*/) const
|
|
1970 |
/**
|
|
1971 |
Extracts the extended precision value as
|
|
1972 |
a single precision floating point value.
|
|
1973 |
|
|
1974 |
@param aVal A reference to a single precision object which contains
|
|
1975 |
the result of the operation.
|
|
1976 |
|
|
1977 |
@return KErrNone, if the operation is successful;
|
|
1978 |
KErrOverflow, if the operation results in overflow;
|
|
1979 |
KErrUnderflow, if the operation results in underflow.
|
|
1980 |
*/
|
|
1981 |
{
|
|
1982 |
// On entry, ecx=this, [esp+4]=address of aVal
|
|
1983 |
// On exit, eax=return code
|
|
1984 |
THISCALL_PROLOG1()
|
|
1985 |
asm("push ecx");
|
|
1986 |
asm("push ebx");
|
|
1987 |
asm("mov ebx, [ecx]"); // *this into ecx,edx:ebx
|
|
1988 |
asm("mov edx, [ecx+4]");
|
|
1989 |
asm("mov ecx, [ecx+8]");
|
|
1990 |
asm("call %a0": : "i"(&TRealXGetTReal32));
|
|
1991 |
asm("mov ecx, [esp+12]"); // ecx=address of aVal
|
|
1992 |
asm("mov [ecx], edx"); // store result
|
|
1993 |
asm("pop ebx");
|
|
1994 |
asm("pop ecx");
|
|
1995 |
THISCALL_EPILOG1() // return with error code in eax
|
|
1996 |
}
|
|
1997 |
|
|
1998 |
|
|
1999 |
|
|
2000 |
|
|
2001 |
__NAKED__ EXPORT_C TInt TRealX::GetTReal(TReal64& /*aVal*/) const
|
|
2002 |
/**
|
|
2003 |
Extracts the extended precision value as
|
|
2004 |
a double precision floating point value.
|
|
2005 |
|
|
2006 |
@param aVal A reference to a double precision object which
|
|
2007 |
contains the result of the operation.
|
|
2008 |
|
|
2009 |
@return KErrNone, if the operation is successful;
|
|
2010 |
KErrOverflow, if the operation results in overflow;
|
|
2011 |
KErrUnderflow, if the operation results in underflow.
|
|
2012 |
*/
|
|
2013 |
{
|
|
2014 |
// On entry, ecx=this, [esp+4]=address of aVal
|
|
2015 |
// On exit, eax=return code
|
|
2016 |
THISCALL_PROLOG1()
|
|
2017 |
asm("push ecx");
|
|
2018 |
asm("push ebx");
|
|
2019 |
asm("push esi");
|
|
2020 |
asm("push edi");
|
|
2021 |
asm("mov ebx, [ecx]"); // *this into ecx,edx:ebx
|
|
2022 |
asm("mov edx, [ecx+4]");
|
|
2023 |
asm("mov ecx, [ecx+8]");
|
|
2024 |
asm("call %a0": : "i"(&TRealXGetTReal64));
|
|
2025 |
asm("mov ecx, [esp+20]"); // ecx=address of aVal
|
|
2026 |
asm("mov [ecx], ebx"); // store result
|
|
2027 |
asm("mov [ecx+4], edx");
|
|
2028 |
asm("pop edi");
|
|
2029 |
asm("pop esi");
|
|
2030 |
asm("pop ebx");
|
|
2031 |
asm("pop ecx");
|
|
2032 |
THISCALL_EPILOG1() // return with error code in eax
|
|
2033 |
}
|
|
2034 |
|
|
2035 |
|
|
2036 |
|
|
2037 |
|
|
2038 |
__NAKED__ EXPORT_C void TRealX::SetZero(TBool /*aNegative*/)
|
|
2039 |
/**
|
|
2040 |
Sets the value of this extended precision object to zero.
|
|
2041 |
|
|
2042 |
@param aNegative ETrue, the value is a negative zero;
|
|
2043 |
EFalse, the value is a positive zero, this is the default.
|
|
2044 |
*/
|
|
2045 |
{
|
|
2046 |
THISCALL_PROLOG1()
|
|
2047 |
asm("mov edx, [esp+4]"); // aNegative into edx
|
|
2048 |
asm("xor eax, eax"); // eax=0
|
|
2049 |
asm("mov [ecx], eax");
|
|
2050 |
asm("mov [ecx+4], eax");
|
|
2051 |
asm("test edx, edx");
|
|
2052 |
asm("jz short setzero1");
|
|
2053 |
asm("inc eax"); // eax=1 if aNegative!=0
|
|
2054 |
asm("setzero1:");
|
|
2055 |
asm("mov [ecx+8], eax"); // generate positive or negative zero
|
|
2056 |
THISCALL_EPILOG1()
|
|
2057 |
}
|
|
2058 |
|
|
2059 |
|
|
2060 |
|
|
2061 |
|
|
2062 |
__NAKED__ EXPORT_C void TRealX::SetNaN()
|
|
2063 |
/**
|
|
2064 |
Sets the value of this extended precision object to 'not a number'.
|
|
2065 |
*/
|
|
2066 |
{
|
|
2067 |
THISCALL_PROLOG0()
|
|
2068 |
asm("xor eax, eax"); // set *this to 'real indefinite'
|
|
2069 |
asm("mov [ecx], eax");
|
|
2070 |
asm("mov eax, 0xC0000000");
|
|
2071 |
asm("mov [ecx+4], eax");
|
|
2072 |
asm("mov eax, 0xFFFF0001");
|
|
2073 |
asm("mov [ecx+8], eax");
|
|
2074 |
THISCALL_EPILOG0()
|
|
2075 |
}
|
|
2076 |
|
|
2077 |
|
|
2078 |
|
|
2079 |
|
|
2080 |
__NAKED__ EXPORT_C void TRealX::SetInfinite(TBool /*aNegative*/)
|
|
2081 |
/**
|
|
2082 |
Sets the value of this extended precision object to infinity.
|
|
2083 |
|
|
2084 |
@param aNegative ETrue, the value is a negative zero;
|
|
2085 |
EFalse, the value is a positive zero.
|
|
2086 |
*/
|
|
2087 |
{
|
|
2088 |
THISCALL_PROLOG1()
|
|
2089 |
asm("mov edx, [esp+4]"); // aNegative into edx
|
|
2090 |
asm("mov eax, 0xFFFF0000"); // exponent=FFFF, sign=0 initially
|
|
2091 |
asm("test edx, edx");
|
|
2092 |
asm("jz short setinf1");
|
|
2093 |
asm("inc eax"); // sign=1 if aNegative!=0
|
|
2094 |
asm("setinf1:");
|
|
2095 |
asm("mov [ecx+8], eax");
|
|
2096 |
asm("mov eax, 0x80000000"); // generate positive or negative infinity
|
|
2097 |
asm("mov [ecx+4], eax");
|
|
2098 |
asm("xor eax, eax");
|
|
2099 |
asm("mov [ecx], eax");
|
|
2100 |
THISCALL_EPILOG1()
|
|
2101 |
}
|
|
2102 |
|
|
2103 |
|
|
2104 |
|
|
2105 |
|
|
2106 |
__NAKED__ EXPORT_C TBool TRealX::IsZero() const
|
|
2107 |
/**
|
|
2108 |
Determines whether the extended precision value is zero.
|
|
2109 |
|
|
2110 |
@return True, if the extended precision value is zero, false, otherwise.
|
|
2111 |
*/
|
|
2112 |
{
|
|
2113 |
THISCALL_PROLOG0()
|
|
2114 |
asm("mov eax, [ecx+8]"); // check exponent
|
|
2115 |
asm("shr eax, 16"); // move exponent into ax
|
|
2116 |
asm("jz short iszero1"); // branch if zero
|
|
2117 |
asm("xor eax, eax"); // else return 0
|
|
2118 |
THISCALL_EPILOG0()
|
|
2119 |
asm("iszero1:");
|
|
2120 |
asm("inc eax"); // if zero, return 1
|
|
2121 |
THISCALL_EPILOG0()
|
|
2122 |
}
|
|
2123 |
|
|
2124 |
|
|
2125 |
|
|
2126 |
|
|
2127 |
__NAKED__ EXPORT_C TBool TRealX::IsNaN() const
|
|
2128 |
/**
|
|
2129 |
Determines whether the extended precision value is 'not a number'.
|
|
2130 |
|
|
2131 |
@return True, if the extended precision value is 'not a number',
|
|
2132 |
false, otherwise.
|
|
2133 |
*/
|
|
2134 |
{
|
|
2135 |
THISCALL_PROLOG0()
|
|
2136 |
asm("mov eax, [ecx+8]"); // check exponent
|
|
2137 |
asm("cmp eax, 0xFFFF0000");
|
|
2138 |
asm("jc short isnan0"); // branch if not FFFF
|
|
2139 |
asm("mov eax, [ecx+4]");
|
|
2140 |
asm("cmp eax, 0x80000000"); // check for infinity
|
|
2141 |
asm("jne short isnan1");
|
|
2142 |
asm("mov eax, [ecx]");
|
|
2143 |
asm("test eax, eax");
|
|
2144 |
asm("jne short isnan1");
|
|
2145 |
asm("isnan0:");
|
|
2146 |
asm("xor eax, eax"); // return 0 if not NaN
|
|
2147 |
THISCALL_EPILOG0()
|
|
2148 |
asm("isnan1:");
|
|
2149 |
asm("mov eax, 1"); // return 1 if NaN
|
|
2150 |
THISCALL_EPILOG0()
|
|
2151 |
}
|
|
2152 |
|
|
2153 |
|
|
2154 |
|
|
2155 |
|
|
2156 |
__NAKED__ EXPORT_C TBool TRealX::IsInfinite() const
|
|
2157 |
/**
|
|
2158 |
Determines whether the extended precision value has a finite value.
|
|
2159 |
|
|
2160 |
@return True, if the extended precision value is finite,
|
|
2161 |
false, if the value is 'not a number' or is infinite,
|
|
2162 |
*/
|
|
2163 |
{
|
|
2164 |
THISCALL_PROLOG0()
|
|
2165 |
asm("mov eax, [ecx+8]"); // check exponent
|
|
2166 |
asm("cmp eax, 0xFFFF0000");
|
|
2167 |
asm("jc short isinf0"); // branch if not FFFF
|
|
2168 |
asm("mov eax, [ecx+4]");
|
|
2169 |
asm("cmp eax, 0x80000000"); // check for infinity
|
|
2170 |
asm("jne short isinf0");
|
|
2171 |
asm("mov eax, [ecx]");
|
|
2172 |
asm("test eax, eax");
|
|
2173 |
asm("jne short isinf0");
|
|
2174 |
asm("inc eax"); // return 1 if infinity
|
|
2175 |
THISCALL_EPILOG0()
|
|
2176 |
asm("isinf0:");
|
|
2177 |
asm("xor eax, eax"); // return 0 if not infinity
|
|
2178 |
THISCALL_EPILOG0()
|
|
2179 |
}
|
|
2180 |
|
|
2181 |
|
|
2182 |
|
|
2183 |
|
|
2184 |
__NAKED__ EXPORT_C TBool TRealX::IsFinite() const
|
|
2185 |
/**
|
|
2186 |
Determines whether the extended precision value has a finite value.
|
|
2187 |
|
|
2188 |
@return True, if the extended precision value is finite,
|
|
2189 |
false, if the value is 'not a number' or is infinite,
|
|
2190 |
*/
|
|
2191 |
{
|
|
2192 |
THISCALL_PROLOG0()
|
|
2193 |
asm("mov eax, [ecx+8]"); // check exponent
|
|
2194 |
asm("cmp eax, 0xFFFF0000"); // check for NaN or infinity
|
|
2195 |
asm("jnc short isfinite0"); // branch if NaN or infinity
|
|
2196 |
asm("mov eax, 1"); // return 1 if finite
|
|
2197 |
THISCALL_EPILOG0()
|
|
2198 |
asm("isfinite0:");
|
|
2199 |
asm("xor eax, eax"); // return 0 if NaN or infinity
|
|
2200 |
THISCALL_EPILOG0()
|
|
2201 |
}
|
|
2202 |
|
|
2203 |
|
|
2204 |
|
|
2205 |
|
|
2206 |
__NAKED__ EXPORT_C const TRealX& TRealX::operator+=(const TRealX& /*aVal*/)
|
|
2207 |
/**
|
|
2208 |
Adds an extended precision value to this extended precision number.
|
|
2209 |
|
|
2210 |
@param aVal The extended precision value to be added.
|
|
2211 |
|
|
2212 |
@return A reference to this object.
|
|
2213 |
|
|
2214 |
@panic MATHX KErrOverflow if the operation results in overflow.
|
|
2215 |
@panic MATHX KErrUnderflow if the operation results in underflow.
|
|
2216 |
*/
|
|
2217 |
{
|
|
2218 |
// on entry ecx=this, [esp+4]=address of aVal
|
|
2219 |
THISCALL_PROLOG1()
|
|
2220 |
asm("push ebx"); // save registers
|
|
2221 |
asm("push ebp");
|
|
2222 |
asm("push esi");
|
|
2223 |
asm("push edi");
|
|
2224 |
asm("mov esi, ecx"); // this into esi
|
|
2225 |
asm("mov ecx, [esp+20]"); // address of aVal into ecx
|
|
2226 |
asm("mov ebx, [ecx]"); // aVal into ecx,edx:ebx
|
|
2227 |
asm("mov edx, [ecx+4]");
|
|
2228 |
asm("mov ecx, [ecx+8]");
|
|
2229 |
asm("call %a0": :"i"(&TRealXAdd)); // do addition, result in ecx,edx:ebx, error code in eax
|
|
2230 |
asm("mov [esi], ebx"); // store result in *this
|
|
2231 |
asm("mov [esi+4], edx");
|
|
2232 |
asm("mov [esi+8], ecx");
|
|
2233 |
asm("test eax, eax");
|
|
2234 |
_ASM_jn(z,TRealXPanicEax) // panic if error
|
|
2235 |
asm("mov eax, esi"); // return this in eax
|
|
2236 |
asm("mov ecx, esi"); // restore registers
|
|
2237 |
asm("pop edi");
|
|
2238 |
asm("pop esi");
|
|
2239 |
asm("pop ebp");
|
|
2240 |
asm("pop ebx");
|
|
2241 |
THISCALL_EPILOG1()
|
|
2242 |
}
|
|
2243 |
|
|
2244 |
|
|
2245 |
|
|
2246 |
|
|
2247 |
__NAKED__ EXPORT_C const TRealX& TRealX::operator-=(const TRealX& /*aVal*/)
|
|
2248 |
/**
|
|
2249 |
Subtracts an extended precision value from this extended precision number.
|
|
2250 |
|
|
2251 |
@param aVal The extended precision value to be subtracted.
|
|
2252 |
|
|
2253 |
@return A reference to this object.
|
|
2254 |
|
|
2255 |
@panic MATHX KErrOverflow if the operation results in overflow.
|
|
2256 |
@panic MATHX KErrUnderflow if the operation results in underflow.
|
|
2257 |
*/
|
|
2258 |
{
|
|
2259 |
// on entry ecx=this, [esp+4]=address of aVal
|
|
2260 |
THISCALL_PROLOG1()
|
|
2261 |
asm("push ebx"); // save registers
|
|
2262 |
asm("push ebp");
|
|
2263 |
asm("push esi");
|
|
2264 |
asm("push edi");
|
|
2265 |
asm("mov esi, ecx"); // this into esi
|
|
2266 |
asm("mov ecx, [esp+20]"); // address of aVal into ecx
|
|
2267 |
asm("mov ebx, [ecx]"); // aVal into ecx,edx:ebx
|
|
2268 |
asm("mov edx, [ecx+4]");
|
|
2269 |
asm("mov ecx, [ecx+8]");
|
|
2270 |
asm("call %a0": : "i"(&TRealXSubtract)); // do subtraction, result in ecx,edx:ebx, error code in eax
|
|
2271 |
asm("mov [esi], ebx"); // store result in *this
|
|
2272 |
asm("mov [esi+4], edx");
|
|
2273 |
asm("mov [esi+8], ecx");
|
|
2274 |
asm("test eax, eax");
|
|
2275 |
_ASM_jn(z,TRealXPanicEax) // panic if error
|
|
2276 |
asm("mov eax, esi"); // return this in eax
|
|
2277 |
asm("mov ecx, esi"); // restore registers
|
|
2278 |
asm("pop edi");
|
|
2279 |
asm("pop esi");
|
|
2280 |
asm("pop ebp");
|
|
2281 |
asm("pop ebx");
|
|
2282 |
THISCALL_EPILOG1()
|
|
2283 |
}
|
|
2284 |
|
|
2285 |
|
|
2286 |
|
|
2287 |
|
|
2288 |
__NAKED__ EXPORT_C const TRealX& TRealX::operator*=(const TRealX& /*aVal*/)
|
|
2289 |
/**
|
|
2290 |
Multiplies this extended precision number by an extended precision value.
|
|
2291 |
|
|
2292 |
@param aVal The extended precision value to be subtracted.
|
|
2293 |
|
|
2294 |
@return A reference to this object.
|
|
2295 |
|
|
2296 |
@panic MATHX KErrOverflow if the operation results in overflow.
|
|
2297 |
@panic MATHX KErrUnderflow if the operation results in underflow.
|
|
2298 |
*/
|
|
2299 |
{
|
|
2300 |
// on entry ecx=this, [esp+4]=address of aVal
|
|
2301 |
THISCALL_PROLOG1()
|
|
2302 |
asm("push ebx"); // save registers
|
|
2303 |
asm("push ebp");
|
|
2304 |
asm("push esi");
|
|
2305 |
asm("push edi");
|
|
2306 |
asm("mov esi, ecx"); // esi = this
|
|
2307 |
asm("mov ecx, [esp+20]"); // address of aVal into ecx
|
|
2308 |
asm("mov ebx, [ecx]"); // aVal into ecx,edx:ebx
|
|
2309 |
asm("mov edx, [ecx+4]");
|
|
2310 |
asm("mov ecx, [ecx+8]");
|
|
2311 |
asm("call %a0": : "i"(&TRealXMultiply)); // do multiplication, result in ecx,edx:ebx, error code in eax
|
|
2312 |
asm("mov [esi], ebx"); // store result in *this
|
|
2313 |
asm("mov [esi+4], edx");
|
|
2314 |
asm("mov [esi+8], ecx");
|
|
2315 |
asm("test eax, eax");
|
|
2316 |
_ASM_jn(z,TRealXPanicEax) // panic if error
|
|
2317 |
asm("mov eax, esi"); // return this in eax
|
|
2318 |
asm("mov ecx, esi"); // restore registers
|
|
2319 |
asm("pop edi");
|
|
2320 |
asm("pop esi");
|
|
2321 |
asm("pop ebp");
|
|
2322 |
asm("pop ebx");
|
|
2323 |
THISCALL_EPILOG1()
|
|
2324 |
}
|
|
2325 |
|
|
2326 |
|
|
2327 |
|
|
2328 |
|
|
2329 |
__NAKED__ EXPORT_C const TRealX& TRealX::operator/=(const TRealX& /*aVal*/)
|
|
2330 |
/**
|
|
2331 |
Divides this extended precision number by an extended precision value.
|
|
2332 |
|
|
2333 |
@param aVal The extended precision value to be used as the divisor.
|
|
2334 |
|
|
2335 |
@return A reference to this object.
|
|
2336 |
|
|
2337 |
@panic MATHX KErrOverflow if the operation results in overflow.
|
|
2338 |
@panic MATHX KErrUnderflow if the operation results in underflow.
|
|
2339 |
@panic MATHX KErrDivideByZero if the divisor is zero.
|
|
2340 |
*/
|
|
2341 |
{
|
|
2342 |
// on entry ecx=this, [esp+4]=address of aVal
|
|
2343 |
THISCALL_PROLOG1()
|
|
2344 |
asm("push ebx");
|
|
2345 |
asm("push ebp");
|
|
2346 |
asm("push esi");
|
|
2347 |
asm("push edi");
|
|
2348 |
asm("mov esi, ecx"); // this into esi
|
|
2349 |
asm("mov ecx, [esp+20]"); // address of aVal into ecx
|
|
2350 |
asm("mov ebx, [ecx]"); // aVal into ecx,edx:ebx
|
|
2351 |
asm("mov edx, [ecx+4]");
|
|
2352 |
asm("mov ecx, [ecx+8]");
|
|
2353 |
asm("call %a0": : "i"(&TRealXDivide)); // do division, result in ecx,edx:ebx, error code in eax
|
|
2354 |
asm("mov [esi], ebx"); // store result in *this
|
|
2355 |
asm("mov [esi+4], edx");
|
|
2356 |
asm("mov [esi+8], ecx");
|
|
2357 |
asm("test eax, eax");
|
|
2358 |
_ASM_jn(z,TRealXPanicEax) // panic if error
|
|
2359 |
asm("mov eax, esi"); // return this in eax
|
|
2360 |
asm("mov ecx, esi"); // restore registers
|
|
2361 |
asm("pop edi");
|
|
2362 |
asm("pop esi");
|
|
2363 |
asm("pop ebp");
|
|
2364 |
asm("pop ebx");
|
|
2365 |
THISCALL_EPILOG1()
|
|
2366 |
}
|
|
2367 |
|
|
2368 |
|
|
2369 |
|
|
2370 |
|
|
2371 |
__NAKED__ EXPORT_C const TRealX& TRealX::operator%=(const TRealX& /*aVal*/)
|
|
2372 |
/**
|
|
2373 |
Modulo-divides this extended precision number by an extended precision value.
|
|
2374 |
|
|
2375 |
@param aVal The extended precision value to be used as the divisor.
|
|
2376 |
|
|
2377 |
@return A reference to this object.
|
|
2378 |
|
|
2379 |
@panic MATHX KErrTotalLossOfPrecision panic if precision is lost.
|
|
2380 |
@panic MATHX KErrUnderflow if the operation results in underflow.
|
|
2381 |
*/
|
|
2382 |
{
|
|
2383 |
// on entry ecx=this, [esp+4]=address of aVal
|
|
2384 |
THISCALL_PROLOG1()
|
|
2385 |
asm("push ebx");
|
|
2386 |
asm("push ebp");
|
|
2387 |
asm("push esi");
|
|
2388 |
asm("push edi");
|
|
2389 |
asm("mov esi, ecx"); // this into esi
|
|
2390 |
asm("mov ecx, [esp+20]"); // address of aVal into ecx
|
|
2391 |
asm("mov ebx, [ecx]"); // aVal into ecx,edx:ebx
|
|
2392 |
asm("mov edx, [ecx+4]");
|
|
2393 |
asm("mov ecx, [ecx+8]");
|
|
2394 |
asm("call %a0": : "i"(&TRealXModulo)); // do modulo, result in ecx,edx:ebx, error code in eax
|
|
2395 |
asm("mov [esi], ebx"); // store result in *this
|
|
2396 |
asm("mov [esi+4], edx");
|
|
2397 |
asm("mov [esi+8], ecx");
|
|
2398 |
asm("test eax, eax");
|
|
2399 |
_ASM_jn(z,TRealXPanicEax) // panic if error
|
|
2400 |
asm("mov eax, esi"); // return this in eax
|
|
2401 |
asm("mov ecx, esi"); // restore registers
|
|
2402 |
asm("pop edi");
|
|
2403 |
asm("pop esi");
|
|
2404 |
asm("pop ebp");
|
|
2405 |
asm("pop ebx");
|
|
2406 |
THISCALL_EPILOG1()
|
|
2407 |
}
|
|
2408 |
|
|
2409 |
|
|
2410 |
|
|
2411 |
|
|
2412 |
__NAKED__ EXPORT_C TInt TRealX::AddEq(const TRealX& /*aVal*/)
|
|
2413 |
/**
|
|
2414 |
Adds an extended precision value to this extended precision number.
|
|
2415 |
|
|
2416 |
@param aVal The extended precision value to be added.
|
|
2417 |
|
|
2418 |
@return KErrNone, if the operation is successful;
|
|
2419 |
KErrOverflow,if the operation results in overflow;
|
|
2420 |
KErrUnderflow, if the operation results in underflow.
|
|
2421 |
*/
|
|
2422 |
{
|
|
2423 |
// on entry ecx=this, [esp+4]=address of aVal
|
|
2424 |
THISCALL_PROLOG1()
|
|
2425 |
asm("push ebx"); // save registers
|
|
2426 |
asm("push ebp");
|
|
2427 |
asm("push esi");
|
|
2428 |
asm("push edi");
|
|
2429 |
asm("mov esi, ecx"); // this into esi
|
|
2430 |
asm("mov ecx, [esp+20]"); // address of aVal into ecx
|
|
2431 |
asm("mov ebx, [ecx]"); // aVal into ecx,edx:ebx
|
|
2432 |
asm("mov edx, [ecx+4]");
|
|
2433 |
asm("mov ecx, [ecx+8]");
|
|
2434 |
asm("call %a0": :"i"(&TRealXAdd)); // do addition, result in ecx,edx:ebx, error code in eax
|
|
2435 |
asm("mov [esi], ebx"); // store result
|
|
2436 |
asm("mov [esi+4], edx");
|
|
2437 |
asm("mov [esi+8], ecx");
|
|
2438 |
asm("mov ecx, esi"); // restore registers
|
|
2439 |
asm("pop edi");
|
|
2440 |
asm("pop esi");
|
|
2441 |
asm("pop ebp");
|
|
2442 |
asm("pop ebx");
|
|
2443 |
THISCALL_EPILOG1() // return with error code in eax
|
|
2444 |
}
|
|
2445 |
|
|
2446 |
|
|
2447 |
|
|
2448 |
|
|
2449 |
__NAKED__ EXPORT_C TInt TRealX::SubEq(const TRealX& /*aVal*/)
|
|
2450 |
/**
|
|
2451 |
Subtracts an extended precision value from this extended precision number.
|
|
2452 |
|
|
2453 |
@param aVal The extended precision value to be subtracted.
|
|
2454 |
|
|
2455 |
@return KErrNone, if the operation is successful;
|
|
2456 |
KErrOverflow, if the operation results in overflow;
|
|
2457 |
KErrUnderflow, if the operation results in underflow.
|
|
2458 |
*/
|
|
2459 |
{
|
|
2460 |
// on entry ecx=this, [esp+4]=address of aVal
|
|
2461 |
THISCALL_PROLOG1()
|
|
2462 |
asm("push ebx"); // save registers
|
|
2463 |
asm("push ebp");
|
|
2464 |
asm("push esi");
|
|
2465 |
asm("push edi");
|
|
2466 |
asm("mov esi, ecx"); // this into esi
|
|
2467 |
asm("mov ecx, [esp+20]"); // address of aVal into ecx
|
|
2468 |
asm("mov ebx, [ecx]"); // aVal into ecx,edx:ebx
|
|
2469 |
asm("mov edx, [ecx+4]");
|
|
2470 |
asm("mov ecx, [ecx+8]");
|
|
2471 |
asm("call %a0": : "i"(&TRealXSubtract)); // do subtraction, result in ecx,edx:ebx, error code in eax
|
|
2472 |
asm("mov [esi], ebx"); // store result
|
|
2473 |
asm("mov [esi+4], edx");
|
|
2474 |
asm("mov [esi+8], ecx");
|
|
2475 |
asm("mov ecx, esi"); // restore registers
|
|
2476 |
asm("pop edi");
|
|
2477 |
asm("pop esi");
|
|
2478 |
asm("pop ebp");
|
|
2479 |
asm("pop ebx");
|
|
2480 |
THISCALL_EPILOG1() // return with error code in eax
|
|
2481 |
}
|
|
2482 |
|
|
2483 |
|
|
2484 |
|
|
2485 |
|
|
2486 |
__NAKED__ EXPORT_C TInt TRealX::MultEq(const TRealX& /*aVal*/)
|
|
2487 |
/**
|
|
2488 |
Multiplies this extended precision number by an extended precision value.
|
|
2489 |
|
|
2490 |
@param aVal The extended precision value to be used as the multiplier.
|
|
2491 |
|
|
2492 |
@return KErrNone, if the operation is successful;
|
|
2493 |
KErrOverflow, if the operation results in overflow;
|
|
2494 |
KErrUnderflow, if the operation results in underflow
|
|
2495 |
*/
|
|
2496 |
{
|
|
2497 |
// on entry ecx=this, [esp+4]=address of aVal
|
|
2498 |
THISCALL_PROLOG1()
|
|
2499 |
asm("push ebx"); // save registers
|
|
2500 |
asm("push ebp");
|
|
2501 |
asm("push esi");
|
|
2502 |
asm("push edi");
|
|
2503 |
asm("mov esi, ecx"); // this into esi
|
|
2504 |
asm("mov ecx, [esp+20]"); // address of aVal into ecx
|
|
2505 |
asm("mov ebx, [ecx]"); // aVal into ecx,edx:ebx
|
|
2506 |
asm("mov edx, [ecx+4]");
|
|
2507 |
asm("mov ecx, [ecx+8]");
|
|
2508 |
asm("call %a0": : "i"(&TRealXMultiply)); // do multiplication, result in ecx,edx:ebx, error code in eax
|
|
2509 |
asm("mov [esi], ebx"); // store result
|
|
2510 |
asm("mov [esi+4], edx");
|
|
2511 |
asm("mov [esi+8], ecx");
|
|
2512 |
asm("mov ecx, esi"); // restore registers
|
|
2513 |
asm("pop edi");
|
|
2514 |
asm("pop esi");
|
|
2515 |
asm("pop ebp");
|
|
2516 |
asm("pop ebx");
|
|
2517 |
THISCALL_EPILOG1() // return with error code in eax
|
|
2518 |
}
|
|
2519 |
|
|
2520 |
|
|
2521 |
|
|
2522 |
|
|
2523 |
__NAKED__ EXPORT_C TInt TRealX::DivEq(const TRealX& /*aVal*/)
|
|
2524 |
/**
|
|
2525 |
Divides this extended precision number by an extended precision value.
|
|
2526 |
|
|
2527 |
@param aVal The extended precision value to be used as the divisor.
|
|
2528 |
|
|
2529 |
@return KErrNone, if the operation is successful;
|
|
2530 |
KErrOverflow, if the operation results in overflow;
|
|
2531 |
KErrUnderflow, if the operation results in underflow;
|
|
2532 |
KErrDivideByZero, if the divisor is zero.
|
|
2533 |
*/
|
|
2534 |
{
|
|
2535 |
// on entry ecx=this, [esp+4]=address of aVal
|
|
2536 |
THISCALL_PROLOG1()
|
|
2537 |
asm("push ebx"); // save registers
|
|
2538 |
asm("push ebp");
|
|
2539 |
asm("push esi");
|
|
2540 |
asm("push edi");
|
|
2541 |
asm("mov esi, ecx"); // this into esi
|
|
2542 |
asm("mov ecx, [esp+20]"); // address of aVal into ecx
|
|
2543 |
asm("mov ebx, [ecx]"); // aVal into ecx,edx:ebx
|
|
2544 |
asm("mov edx, [ecx+4]");
|
|
2545 |
asm("mov ecx, [ecx+8]");
|
|
2546 |
asm("call %a0": : "i"(&TRealXDivide)); // do division, result in ecx,edx:ebx, error code in eax
|
|
2547 |
asm("mov [esi], ebx"); // store result
|
|
2548 |
asm("mov [esi+4], edx");
|
|
2549 |
asm("mov [esi+8], ecx");
|
|
2550 |
asm("mov ecx, esi"); // restore registers
|
|
2551 |
asm("pop edi");
|
|
2552 |
asm("pop esi");
|
|
2553 |
asm("pop ebp");
|
|
2554 |
asm("pop ebx");
|
|
2555 |
THISCALL_EPILOG1() // return with error code in eax
|
|
2556 |
}
|
|
2557 |
|
|
2558 |
|
|
2559 |
|
|
2560 |
|
|
2561 |
__NAKED__ EXPORT_C TInt TRealX::ModEq(const TRealX& /*aVal*/)
|
|
2562 |
/**
|
|
2563 |
Modulo-divides this extended precision number by an extended precision value.
|
|
2564 |
|
|
2565 |
@param aVal The extended precision value to be used as the divisor.
|
|
2566 |
|
|
2567 |
@return KErrNone, if the operation is successful;
|
|
2568 |
KErrTotalLossOfPrecision, if precision is lost;
|
|
2569 |
KErrUnderflow, if the operation results in underflow.
|
|
2570 |
*/
|
|
2571 |
{
|
|
2572 |
// on entry ecx=this, [esp+4]=address of aVal
|
|
2573 |
THISCALL_PROLOG1()
|
|
2574 |
asm("push ebx"); // save registers
|
|
2575 |
asm("push ebp");
|
|
2576 |
asm("push esi");
|
|
2577 |
asm("push edi");
|
|
2578 |
asm("mov esi, ecx"); // this into esi
|
|
2579 |
asm("mov ecx, [esp+20]"); // address of aVal into ecx
|
|
2580 |
asm("mov ebx, [ecx]"); // aVal into ecx,edx:ebx
|
|
2581 |
asm("mov edx, [ecx+4]");
|
|
2582 |
asm("mov ecx, [ecx+8]");
|
|
2583 |
asm("call %a0": : "i"(&TRealXModulo)); // do modulo, result in ecx,edx:ebx, error code in eax
|
|
2584 |
asm("mov [esi], ebx"); // store result
|
|
2585 |
asm("mov [esi+4], edx");
|
|
2586 |
asm("mov [esi+8], ecx");
|
|
2587 |
asm("mov ecx, esi"); // restore registers
|
|
2588 |
asm("pop edi");
|
|
2589 |
asm("pop esi");
|
|
2590 |
asm("pop ebp");
|
|
2591 |
asm("pop ebx");
|
|
2592 |
THISCALL_EPILOG1() // return with error code in eax
|
|
2593 |
}
|
|
2594 |
|
|
2595 |
|
|
2596 |
|
|
2597 |
|
|
2598 |
__NAKED__ EXPORT_C TRealX TRealX::operator+() const
|
|
2599 |
/**
|
|
2600 |
Returns this extended precision number unchanged.
|
|
2601 |
|
|
2602 |
Note that this may also be referred to as a unary plus operator.
|
|
2603 |
|
|
2604 |
@return The extended precision number.
|
|
2605 |
*/
|
|
2606 |
{
|
|
2607 |
THISCALL_PROLOG0_BIGRETVAL()
|
|
2608 |
asm("mov eax, [esp+4]"); // eax=address to write return value
|
|
2609 |
asm("mov edx, [ecx]");
|
|
2610 |
asm("mov [eax], edx");
|
|
2611 |
asm("mov edx, [ecx+4]");
|
|
2612 |
asm("mov [eax+4], edx");
|
|
2613 |
asm("mov edx, [ecx+8]");
|
|
2614 |
asm("mov [eax+8], edx"); // return address of return value in eax
|
|
2615 |
THISCALL_EPILOG0_BIGRETVAL()
|
|
2616 |
}
|
|
2617 |
|
|
2618 |
|
|
2619 |
|
|
2620 |
|
|
2621 |
__NAKED__ EXPORT_C TRealX TRealX::operator-() const
|
|
2622 |
/**
|
|
2623 |
Negates this extended precision number.
|
|
2624 |
|
|
2625 |
This may also be referred to as a unary minus operator.
|
|
2626 |
|
|
2627 |
@return The negative of the extended precision number.
|
|
2628 |
*/
|
|
2629 |
{
|
|
2630 |
THISCALL_PROLOG0_BIGRETVAL()
|
|
2631 |
asm("mov eax, [esp+4]"); // eax=address to write return value
|
|
2632 |
asm("mov edx, [ecx]");
|
|
2633 |
asm("mov [eax], edx");
|
|
2634 |
asm("mov edx, [ecx+4]");
|
|
2635 |
asm("mov [eax+4], edx");
|
|
2636 |
asm("mov edx, [ecx+8]");
|
|
2637 |
asm("xor dl, 1"); // change sign bit
|
|
2638 |
asm("mov [eax+8], edx");
|
|
2639 |
THISCALL_EPILOG0_BIGRETVAL() // return address of return value in eax
|
|
2640 |
}
|
|
2641 |
|
|
2642 |
|
|
2643 |
|
|
2644 |
|
|
2645 |
__NAKED__ EXPORT_C TRealX& TRealX::operator++()
|
|
2646 |
/**
|
|
2647 |
Increments this extended precision number by one,
|
|
2648 |
and then returns a reference to it.
|
|
2649 |
|
|
2650 |
This is also referred to as a prefix operator.
|
|
2651 |
|
|
2652 |
@return A reference to this object.
|
|
2653 |
|
|
2654 |
@panic MATHX KErrOverflow if the operation results in overflow.
|
|
2655 |
@panic MATHX KErrUnderflow if the operation results in underflow.
|
|
2656 |
*/
|
|
2657 |
{
|
|
2658 |
// pre-increment
|
|
2659 |
// on entry ecx=this, return this in eax
|
|
2660 |
THISCALL_PROLOG0()
|
|
2661 |
asm("push ebx"); // save registers
|
|
2662 |
asm("push ebp");
|
|
2663 |
asm("push esi");
|
|
2664 |
asm("push edi");
|
|
2665 |
asm("mov esi, ecx"); // this into esi
|
|
2666 |
asm("mov ecx, 0x7FFF0000"); // set ecx,edx:ebx to 1.0
|
|
2667 |
asm("mov edx, 0x80000000");
|
|
2668 |
asm("xor ebx, ebx");
|
|
2669 |
asm("call %a0": :"i"(&TRealXAdd)); // add 1 to *this
|
|
2670 |
asm("mov [esi], ebx"); // store result
|
|
2671 |
asm("mov [esi+4], edx");
|
|
2672 |
asm("mov [esi+8], ecx");
|
|
2673 |
asm("test eax, eax"); // check error code
|
|
2674 |
_ASM_jn(z,TRealXPanicEax) // panic if error
|
|
2675 |
asm("mov eax, esi"); // else return this in eax
|
|
2676 |
asm("mov ecx, esi");
|
|
2677 |
asm("pop edi");
|
|
2678 |
asm("pop esi");
|
|
2679 |
asm("pop ebp");
|
|
2680 |
asm("pop ebx");
|
|
2681 |
THISCALL_EPILOG0()
|
|
2682 |
}
|
|
2683 |
|
|
2684 |
|
|
2685 |
|
|
2686 |
|
|
2687 |
__NAKED__ EXPORT_C TRealX TRealX::operator++(TInt)
|
|
2688 |
/**
|
|
2689 |
Returns this extended precision number before incrementing it by one.
|
|
2690 |
|
|
2691 |
This is also referred to as a postfix operator.
|
|
2692 |
|
|
2693 |
@return A reference to this object.
|
|
2694 |
|
|
2695 |
@panic MATHX KErrOverflow if the operation results in overflow.
|
|
2696 |
@panic MATHX KErrUnderflow if the operation results in underflow.
|
|
2697 |
*/
|
|
2698 |
{
|
|
2699 |
// post-increment
|
|
2700 |
// on entry ecx=this, [esp+4]=address of return value, [esp+8]=dummy int
|
|
2701 |
THISCALL_PROLOG1_BIGRETVAL()
|
|
2702 |
asm("push ebx"); // save registers
|
|
2703 |
asm("push ebp");
|
|
2704 |
asm("push esi");
|
|
2705 |
asm("push edi");
|
|
2706 |
asm("mov esi, ecx"); // this into esi
|
|
2707 |
asm("mov edi, [esp+20]"); // address of return value into edi
|
|
2708 |
asm("mov eax, [ecx]"); // copy initial value of *this into [edi]
|
|
2709 |
asm("mov [edi], eax");
|
|
2710 |
asm("mov eax, [ecx+4]");
|
|
2711 |
asm("mov [edi+4], eax");
|
|
2712 |
asm("mov eax, [ecx+8]");
|
|
2713 |
asm("mov [edi+8], eax");
|
|
2714 |
asm("mov ecx, 0x7FFF0000"); // set ecx,edx:ebx to 1.0
|
|
2715 |
asm("mov edx, 0x80000000");
|
|
2716 |
asm("xor ebx, ebx");
|
|
2717 |
asm("call %a0": :"i"(&TRealXAdd)); // add 1 to *this
|
|
2718 |
asm("mov [esi], ebx"); // store result in *this
|
|
2719 |
asm("mov [esi+4], edx");
|
|
2720 |
asm("mov [esi+8], ecx");
|
|
2721 |
asm("test eax, eax"); // check error code
|
|
2722 |
_ASM_jn(z,TRealXPanicEax) // panic if error
|
|
2723 |
asm("mov eax, [esp+20]"); // address of return value into eax
|
|
2724 |
asm("mov ecx, esi");
|
|
2725 |
asm("pop edi");
|
|
2726 |
asm("pop esi");
|
|
2727 |
asm("pop ebp");
|
|
2728 |
asm("pop ebx");
|
|
2729 |
THISCALL_EPILOG1_BIGRETVAL()
|
|
2730 |
}
|
|
2731 |
|
|
2732 |
|
|
2733 |
|
|
2734 |
|
|
2735 |
__NAKED__ EXPORT_C TRealX& TRealX::operator--()
|
|
2736 |
/**
|
|
2737 |
Decrements this extended precision number by one,
|
|
2738 |
and then returns a reference to it.
|
|
2739 |
|
|
2740 |
This is also referred to as a prefix operator.
|
|
2741 |
|
|
2742 |
@return A reference to this object.
|
|
2743 |
|
|
2744 |
@panic MATHX KErrOverflow if the operation results in overflow.
|
|
2745 |
@panic MATHX KErrUnderflow if the operation results in underflow.
|
|
2746 |
*/
|
|
2747 |
{
|
|
2748 |
// pre-decrement
|
|
2749 |
// on entry ecx=this, return this in eax
|
|
2750 |
THISCALL_PROLOG0()
|
|
2751 |
asm("push ebx"); // save registers
|
|
2752 |
asm("push ebp");
|
|
2753 |
asm("push esi");
|
|
2754 |
asm("push edi");
|
|
2755 |
asm("mov esi, ecx"); // this into esi
|
|
2756 |
asm("mov ecx, 0x7FFF0001"); // set ecx,edx:ebx to -1.0
|
|
2757 |
asm("mov edx, 0x80000000");
|
|
2758 |
asm("xor ebx, ebx");
|
|
2759 |
asm("call %a0": :"i"(&TRealXAdd)); // add -1 to *this
|
|
2760 |
asm("mov [esi], ebx"); // store result
|
|
2761 |
asm("mov [esi+4], edx");
|
|
2762 |
asm("mov [esi+8], ecx");
|
|
2763 |
asm("test eax, eax"); // check error code
|
|
2764 |
_ASM_jn(z,TRealXPanicEax) // panic if error
|
|
2765 |
asm("mov eax, esi"); // else return this in eax
|
|
2766 |
asm("mov ecx, esi");
|
|
2767 |
asm("pop edi");
|
|
2768 |
asm("pop esi");
|
|
2769 |
asm("pop ebp");
|
|
2770 |
asm("pop ebx");
|
|
2771 |
THISCALL_EPILOG0()
|
|
2772 |
}
|
|
2773 |
|
|
2774 |
|
|
2775 |
|
|
2776 |
|
|
2777 |
__NAKED__ EXPORT_C TRealX TRealX::operator--(TInt)
|
|
2778 |
/**
|
|
2779 |
Returns this extended precision number before decrementing it by one.
|
|
2780 |
|
|
2781 |
This is also referred to as a postfix operator.
|
|
2782 |
|
|
2783 |
@return A reference to this object.
|
|
2784 |
|
|
2785 |
@panic MATHX KErrOverflow if the operation results in overflow.
|
|
2786 |
@panic MATHX KErrUnderflow if the operation results in underflow.
|
|
2787 |
*/
|
|
2788 |
{
|
|
2789 |
// post-decrement
|
|
2790 |
// on entry ecx=this, [esp+4]=address of return value, [esp+8]=dummy int
|
|
2791 |
THISCALL_PROLOG1_BIGRETVAL()
|
|
2792 |
asm("push ebx"); // save registers
|
|
2793 |
asm("push ebp");
|
|
2794 |
asm("push esi");
|
|
2795 |
asm("push edi");
|
|
2796 |
asm("mov esi, ecx"); // this into esi
|
|
2797 |
asm("mov edi, [esp+20]"); // address of return value into edi
|
|
2798 |
asm("mov eax, [ecx]"); // copy initial value of *this into [edi]
|
|
2799 |
asm("mov [edi], eax");
|
|
2800 |
asm("mov eax, [ecx+4]");
|
|
2801 |
asm("mov [edi+4], eax");
|
|
2802 |
asm("mov eax, [ecx+8]");
|
|
2803 |
asm("mov [edi+8], eax");
|
|
2804 |
asm("mov ecx, 0x7FFF0001"); // set ecx,edx:ebx to -1.0
|
|
2805 |
asm("mov edx, 0x80000000");
|
|
2806 |
asm("xor ebx, ebx");
|
|
2807 |
asm("call %a0": :"i"(&TRealXAdd)); // add -1 to *this
|
|
2808 |
asm("mov [esi], ebx"); // store result in *this
|
|
2809 |
asm("mov [esi+4], edx");
|
|
2810 |
asm("mov [esi+8], ecx");
|
|
2811 |
asm("test eax, eax"); // check error code
|
|
2812 |
_ASM_jn(z,TRealXPanicEax) // panic if error
|
|
2813 |
asm("mov eax, [esp+20]"); // address of return value into eax
|
|
2814 |
asm("mov ecx, esi");
|
|
2815 |
asm("pop edi");
|
|
2816 |
asm("pop esi");
|
|
2817 |
asm("pop ebp");
|
|
2818 |
asm("pop ebx");
|
|
2819 |
THISCALL_EPILOG1_BIGRETVAL()
|
|
2820 |
}
|
|
2821 |
|
|
2822 |
|
|
2823 |
|
|
2824 |
|
|
2825 |
__NAKED__ EXPORT_C TRealX TRealX::operator+(const TRealX& /*aVal*/) const
|
|
2826 |
/**
|
|
2827 |
Adds an extended precision value to this extended precision number.
|
|
2828 |
|
|
2829 |
@param aVal The extended precision value to be added.
|
|
2830 |
|
|
2831 |
@return An extended precision object containing the result.
|
|
2832 |
|
|
2833 |
@panic MATHX KErrOverflow if the operation results in overflow.
|
|
2834 |
@panic MATHX KErrUnderflow if the operation results in underflow.
|
|
2835 |
*/
|
|
2836 |
{
|
|
2837 |
// on entry ecx=this, [esp+4]=address of return value, [esp+8]=address of aVal
|
|
2838 |
THISCALL_PROLOG1_BIGRETVAL()
|
|
2839 |
asm("push ecx"); // save registers
|
|
2840 |
asm("push ebx");
|
|
2841 |
asm("push ebp");
|
|
2842 |
asm("push esi");
|
|
2843 |
asm("push edi");
|
|
2844 |
asm("mov esi, ecx"); // this into esi
|
|
2845 |
asm("mov ecx, [esp+28]"); // address of aVal into ecx
|
|
2846 |
asm("mov ebx, [ecx]"); // aVal into ecx,edx:ebx
|
|
2847 |
asm("mov edx, [ecx+4]");
|
|
2848 |
asm("mov ecx, [ecx+8]");
|
|
2849 |
asm("call %a0": :"i"(&TRealXAdd)); // do addition, result in ecx,edx:ebx, error code in eax
|
|
2850 |
asm("mov esi, [esp+24]"); // esi=address of return value
|
|
2851 |
asm("mov [esi], ebx"); // store result
|
|
2852 |
asm("mov [esi+4], edx");
|
|
2853 |
asm("mov [esi+8], ecx");
|
|
2854 |
asm("test eax, eax");
|
|
2855 |
_ASM_jn(z,TRealXPanicEax) // panic if error
|
|
2856 |
asm("mov eax, esi"); // return address of return value in eax
|
|
2857 |
asm("pop edi"); // restore registers
|
|
2858 |
asm("pop esi");
|
|
2859 |
asm("pop ebp");
|
|
2860 |
asm("pop ebx");
|
|
2861 |
asm("pop ecx");
|
|
2862 |
THISCALL_EPILOG1_BIGRETVAL()
|
|
2863 |
}
|
|
2864 |
|
|
2865 |
|
|
2866 |
|
|
2867 |
|
|
2868 |
__NAKED__ EXPORT_C TRealX TRealX::operator-(const TRealX& /*aVal*/) const
|
|
2869 |
/**
|
|
2870 |
Subtracts an extended precision value from this extended precision number.
|
|
2871 |
|
|
2872 |
@param aVal The extended precision value to be subtracted.
|
|
2873 |
|
|
2874 |
@return An extended precision object containing the result.
|
|
2875 |
|
|
2876 |
@panic MATHX KErrOverflow if the operation results in overflow.
|
|
2877 |
@panic MATHX KErrUnderflow if the operation results in underflow.
|
|
2878 |
*/
|
|
2879 |
{
|
|
2880 |
// on entry ecx=this, [esp+4]=address of return value, [esp+8]=address of aVal
|
|
2881 |
THISCALL_PROLOG1_BIGRETVAL()
|
|
2882 |
asm("push ecx"); // save registers
|
|
2883 |
asm("push ebx");
|
|
2884 |
asm("push ebp");
|
|
2885 |
asm("push esi");
|
|
2886 |
asm("push edi");
|
|
2887 |
asm("mov esi, ecx"); // this into esi
|
|
2888 |
asm("mov ecx, [esp+28]"); // address of aVal into ecx
|
|
2889 |
asm("mov ebx, [ecx]"); // aVal into ecx,edx:ebx
|
|
2890 |
asm("mov edx, [ecx+4]");
|
|
2891 |
asm("mov ecx, [ecx+8]");
|
|
2892 |
asm("call %a0": : "i"(&TRealXSubtract)); // do subtraction, result in ecx,edx:ebx, error code in eax
|
|
2893 |
asm("mov esi, [esp+24]"); // esi=address of return value
|
|
2894 |
asm("mov [esi], ebx"); // store result
|
|
2895 |
asm("mov [esi+4], edx");
|
|
2896 |
asm("mov [esi+8], ecx");
|
|
2897 |
asm("test eax, eax");
|
|
2898 |
_ASM_jn(z,TRealXPanicEax) // panic if error
|
|
2899 |
asm("mov eax, esi"); // return address of return value in eax
|
|
2900 |
asm("pop edi"); // restore registers
|
|
2901 |
asm("pop esi");
|
|
2902 |
asm("pop ebp");
|
|
2903 |
asm("pop ebx");
|
|
2904 |
asm("pop ecx");
|
|
2905 |
THISCALL_EPILOG1_BIGRETVAL()
|
|
2906 |
}
|
|
2907 |
|
|
2908 |
|
|
2909 |
|
|
2910 |
|
|
2911 |
__NAKED__ EXPORT_C TRealX TRealX::operator*(const TRealX& /*aVal*/) const
|
|
2912 |
/**
|
|
2913 |
Multiplies this extended precision number by an extended precision value.
|
|
2914 |
|
|
2915 |
@param aVal The extended precision value to be used as the multiplier.
|
|
2916 |
|
|
2917 |
@return An extended precision object containing the result.
|
|
2918 |
|
|
2919 |
@panic MATHX KErrOverflow if the operation results in overflow.
|
|
2920 |
@panic MATHX KErrUnderflow if the operation results in underflow.
|
|
2921 |
*/
|
|
2922 |
{
|
|
2923 |
// on entry ecx=this, [esp+4]=address of return value, [esp+8]=address of aVal
|
|
2924 |
THISCALL_PROLOG1_BIGRETVAL()
|
|
2925 |
asm("push ecx"); // save registers
|
|
2926 |
asm("push ebx");
|
|
2927 |
asm("push ebp");
|
|
2928 |
asm("push esi");
|
|
2929 |
asm("push edi");
|
|
2930 |
asm("mov esi, ecx"); // this into esi
|
|
2931 |
asm("mov ecx, [esp+28]"); // address of aVal into ecx
|
|
2932 |
asm("mov ebx, [ecx]"); // aVal into ecx,edx:ebx
|
|
2933 |
asm("mov edx, [ecx+4]");
|
|
2934 |
asm("mov ecx, [ecx+8]");
|
|
2935 |
asm("call %a0": : "i"(&TRealXMultiply)); // do multiplication, result in ecx,edx:ebx, error code in eax
|
|
2936 |
asm("mov esi, [esp+24]"); // esi=address of return value
|
|
2937 |
asm("mov [esi], ebx"); // store result
|
|
2938 |
asm("mov [esi+4], edx");
|
|
2939 |
asm("mov [esi+8], ecx");
|
|
2940 |
asm("test eax, eax");
|
|
2941 |
_ASM_jn(z,TRealXPanicEax) // panic if error
|
|
2942 |
asm("mov eax, esi"); // return address of return value in eax
|
|
2943 |
asm("pop edi"); // restore registers
|
|
2944 |
asm("pop esi");
|
|
2945 |
asm("pop ebp");
|
|
2946 |
asm("pop ebx");
|
|
2947 |
asm("pop ecx");
|
|
2948 |
THISCALL_EPILOG1_BIGRETVAL()
|
|
2949 |
}
|
|
2950 |
|
|
2951 |
|
|
2952 |
|
|
2953 |
|
|
2954 |
__NAKED__ EXPORT_C TRealX TRealX::operator/(const TRealX& /*aVal*/) const
|
|
2955 |
/**
|
|
2956 |
Divides this extended precision number by an extended precision value.
|
|
2957 |
|
|
2958 |
@param aVal The extended precision value to be used as the divisor.
|
|
2959 |
|
|
2960 |
@return An extended precision object containing the result.
|
|
2961 |
|
|
2962 |
@panic MATHX KErrOverflow if the operation results in overflow.
|
|
2963 |
@panic MATHX KErrUnderflow if the operation results in underflow.
|
|
2964 |
@panic MATHX KErrDivideByZero if the divisor is zero.
|
|
2965 |
*/
|
|
2966 |
{
|
|
2967 |
// on entry ecx=this, [esp+4]=address of return value, [esp+8]=address of aVal
|
|
2968 |
THISCALL_PROLOG1_BIGRETVAL()
|
|
2969 |
asm("push ecx"); // save registers
|
|
2970 |
asm("push ebx");
|
|
2971 |
asm("push ebp");
|
|
2972 |
asm("push esi");
|
|
2973 |
asm("push edi");
|
|
2974 |
asm("mov esi, ecx"); // this into esi
|
|
2975 |
asm("mov ecx, [esp+28]"); // address of aVal into ecx
|
|
2976 |
asm("mov ebx, [ecx]"); // aVal into ecx,edx:ebx
|
|
2977 |
asm("mov edx, [ecx+4]");
|
|
2978 |
asm("mov ecx, [ecx+8]");
|
|
2979 |
asm("call %a0": : "i"(&TRealXDivide)); // do division, result in ecx,edx:ebx, error code in eax
|
|
2980 |
asm("mov esi, [esp+24]"); // esi=address of return value
|
|
2981 |
asm("mov [esi], ebx"); // store result
|
|
2982 |
asm("mov [esi+4], edx");
|
|
2983 |
asm("mov [esi+8], ecx");
|
|
2984 |
asm("test eax, eax");
|
|
2985 |
_ASM_jn(z,TRealXPanicEax) // panic if error
|
|
2986 |
asm("mov eax, esi"); // return address of return value in eax
|
|
2987 |
asm("pop edi"); // restore registers
|
|
2988 |
asm("pop esi");
|
|
2989 |
asm("pop ebp");
|
|
2990 |
asm("pop ebx");
|
|
2991 |
asm("pop ecx");
|
|
2992 |
THISCALL_EPILOG1_BIGRETVAL()
|
|
2993 |
}
|
|
2994 |
|
|
2995 |
|
|
2996 |
|
|
2997 |
|
|
2998 |
__NAKED__ EXPORT_C TRealX TRealX::operator%(const TRealX& /*aVal*/) const
|
|
2999 |
/**
|
|
3000 |
Modulo-divides this extended precision number by an extended precision value.
|
|
3001 |
|
|
3002 |
@param aVal The extended precision value to be used as the divisor.
|
|
3003 |
|
|
3004 |
@return An extended precision object containing the result.
|
|
3005 |
|
|
3006 |
@panic MATHX KErrTotalLossOfPrecision if precision is lost.
|
|
3007 |
@panic MATHX KErrUnderflow if the operation results in underflow.
|
|
3008 |
*/
|
|
3009 |
{
|
|
3010 |
// on entry ecx=this, [esp+4]=address of return value, [esp+8]=address of aVal
|
|
3011 |
THISCALL_PROLOG1_BIGRETVAL()
|
|
3012 |
asm("push ecx"); // save registers
|
|
3013 |
asm("push ebx");
|
|
3014 |
asm("push ebp");
|
|
3015 |
asm("push esi");
|
|
3016 |
asm("push edi");
|
|
3017 |
asm("mov esi, ecx"); // this into esi
|
|
3018 |
asm("mov ecx, [esp+28]"); // address of aVal into ecx
|
|
3019 |
asm("mov ebx, [ecx]"); // aVal into ecx,edx:ebx
|
|
3020 |
asm("mov edx, [ecx+4]");
|
|
3021 |
asm("mov ecx, [ecx+8]");
|
|
3022 |
asm("call %a0": : "i"(&TRealXModulo)); // do modulo, result in ecx,edx:ebx, error code in eax
|
|
3023 |
asm("mov esi, [esp+24]"); // esi=address of return value
|
|
3024 |
asm("mov [esi], ebx"); // store result
|
|
3025 |
asm("mov [esi+4], edx");
|
|
3026 |
asm("mov [esi+8], ecx");
|
|
3027 |
asm("test eax, eax");
|
|
3028 |
_ASM_jn(z,TRealXPanicEax) // panic if error
|
|
3029 |
asm("mov eax, esi"); // return address of return value in eax
|
|
3030 |
asm("pop edi"); // restore registers
|
|
3031 |
asm("pop esi");
|
|
3032 |
asm("pop ebp");
|
|
3033 |
asm("pop ebx");
|
|
3034 |
asm("pop ecx");
|
|
3035 |
THISCALL_EPILOG1_BIGRETVAL()
|
|
3036 |
}
|
|
3037 |
|
|
3038 |
|
|
3039 |
|
|
3040 |
|
|
3041 |
__NAKED__ EXPORT_C TInt TRealX::Add(TRealX& /*aResult*/, const TRealX& /*aVal*/) const
|
|
3042 |
/**
|
|
3043 |
Adds an extended precision value to this extended precision number.
|
|
3044 |
|
|
3045 |
@param aResult On return, a reference to an extended precision object
|
|
3046 |
containing the result of the operation.
|
|
3047 |
@param aVal The extended precision value to be added.
|
|
3048 |
|
|
3049 |
@return KErrNone, if the operation is successful;
|
|
3050 |
KErrOverflow, if the operation results in overflow;
|
|
3051 |
KErrUnderflow, if the operation results in underflow.
|
|
3052 |
*/
|
|
3053 |
{
|
|
3054 |
// on entry ecx=this, [esp+4]=address of aResult, [esp+8]=address of aVal
|
|
3055 |
THISCALL_PROLOG2()
|
|
3056 |
asm("push ecx"); // save registers
|
|
3057 |
asm("push ebx");
|
|
3058 |
asm("push ebp");
|
|
3059 |
asm("push esi");
|
|
3060 |
asm("push edi");
|
|
3061 |
asm("mov esi, ecx"); // this into esi
|
|
3062 |
asm("mov ecx, [esp+28]"); // address of aVal into ecx
|
|
3063 |
asm("mov ebx, [ecx]"); // aVal into ecx,edx:ebx
|
|
3064 |
asm("mov edx, [ecx+4]");
|
|
3065 |
asm("mov ecx, [ecx+8]");
|
|
3066 |
asm("call %a0": :"i"(&TRealXAdd)); // do addition, result in ecx,edx:ebx, error code in eax
|
|
3067 |
asm("mov esi, [esp+24]"); // esi=address of aResult
|
|
3068 |
asm("mov [esi], ebx"); // store result
|
|
3069 |
asm("mov [esi+4], edx");
|
|
3070 |
asm("mov [esi+8], ecx");
|
|
3071 |
asm("pop edi"); // restore registers
|
|
3072 |
asm("pop esi");
|
|
3073 |
asm("pop ebp");
|
|
3074 |
asm("pop ebx");
|
|
3075 |
asm("pop ecx");
|
|
3076 |
THISCALL_EPILOG2() // return with error code in eax
|
|
3077 |
}
|
|
3078 |
|
|
3079 |
|
|
3080 |
|
|
3081 |
|
|
3082 |
__NAKED__ EXPORT_C TInt TRealX::Sub(TRealX& /*aResult*/, const TRealX& /*aVal*/) const
|
|
3083 |
/**
|
|
3084 |
Subtracts an extended precision value from this extended precision number.
|
|
3085 |
|
|
3086 |
@param aResult On return, a reference to an extended precision object
|
|
3087 |
containing the result of the operation.
|
|
3088 |
@param aVal The extended precision value to be subtracted.
|
|
3089 |
|
|
3090 |
@return KErrNone, if the operation is successful;
|
|
3091 |
KErrOverflow, if the operation results in overflow;
|
|
3092 |
KErrUnderflow, if the operation results in underflow.
|
|
3093 |
*/
|
|
3094 |
{
|
|
3095 |
// on entry ecx=this, [esp+4]=address of aResult, [esp+8]=address of aVal
|
|
3096 |
THISCALL_PROLOG2()
|
|
3097 |
asm("push ecx"); // save registers
|
|
3098 |
asm("push ebx");
|
|
3099 |
asm("push ebp");
|
|
3100 |
asm("push esi");
|
|
3101 |
asm("push edi");
|
|
3102 |
asm("mov esi, ecx"); // this into esi
|
|
3103 |
asm("mov ecx, [esp+28]"); // address of aVal into ecx
|
|
3104 |
asm("mov ebx, [ecx]"); // aVal into ecx,edx:ebx
|
|
3105 |
asm("mov edx, [ecx+4]");
|
|
3106 |
asm("mov ecx, [ecx+8]");
|
|
3107 |
asm("call %a0": : "i"(&TRealXSubtract)); // do subtraction, result in ecx,edx:ebx, error code in eax
|
|
3108 |
asm("mov esi, [esp+24]"); // esi=address of aResult
|
|
3109 |
asm("mov [esi], ebx"); // store result
|
|
3110 |
asm("mov [esi+4], edx");
|
|
3111 |
asm("mov [esi+8], ecx");
|
|
3112 |
asm("pop edi"); // restore registers
|
|
3113 |
asm("pop esi");
|
|
3114 |
asm("pop ebp");
|
|
3115 |
asm("pop ebx");
|
|
3116 |
asm("pop ecx");
|
|
3117 |
THISCALL_EPILOG2() // return with error code in eax
|
|
3118 |
}
|
|
3119 |
|
|
3120 |
|
|
3121 |
|
|
3122 |
|
|
3123 |
__NAKED__ EXPORT_C TInt TRealX::Mult(TRealX& /*aResult*/, const TRealX& /*aVal*/) const
|
|
3124 |
/**
|
|
3125 |
Multiplies this extended precision number by an extended precision value.
|
|
3126 |
|
|
3127 |
@param aResult On return, a reference to an extended precision object
|
|
3128 |
containing the result of the operation.
|
|
3129 |
@param aVal The extended precision value to be used as the multiplier.
|
|
3130 |
|
|
3131 |
@return KErrNone, if the operation is successful;
|
|
3132 |
KErrOverflow, if the operation results in overflow;
|
|
3133 |
KErrUnderflow, if the operation results in underflow.
|
|
3134 |
*/
|
|
3135 |
{
|
|
3136 |
// on entry ecx=this, [esp+4]=address of aResult, [esp+8]=address of aVal
|
|
3137 |
THISCALL_PROLOG2()
|
|
3138 |
asm("push ecx"); // save registers
|
|
3139 |
asm("push ebx");
|
|
3140 |
asm("push ebp");
|
|
3141 |
asm("push esi");
|
|
3142 |
asm("push edi");
|
|
3143 |
asm("mov esi, ecx"); // this into esi
|
|
3144 |
asm("mov ecx, [esp+28]"); // address of aVal into ecx
|
|
3145 |
asm("mov ebx, [ecx]"); // aVal into ecx,edx:ebx
|
|
3146 |
asm("mov edx, [ecx+4]");
|
|
3147 |
asm("mov ecx, [ecx+8]");
|
|
3148 |
asm("call %a0": : "i"(&TRealXMultiply)); // do multiplication, result in ecx,edx:ebx, error code in eax
|
|
3149 |
asm("mov esi, [esp+24]"); // esi=address of aResult
|
|
3150 |
asm("mov [esi], ebx"); // store result
|
|
3151 |
asm("mov [esi+4], edx");
|
|
3152 |
asm("mov [esi+8], ecx");
|
|
3153 |
asm("pop edi"); // restore registers
|
|
3154 |
asm("pop esi");
|
|
3155 |
asm("pop ebp");
|
|
3156 |
asm("pop ebx");
|
|
3157 |
asm("pop ecx");
|
|
3158 |
THISCALL_EPILOG2() // return with error code in eax
|
|
3159 |
}
|
|
3160 |
|
|
3161 |
|
|
3162 |
|
|
3163 |
__NAKED__ EXPORT_C TInt TRealX::Div(TRealX& /*aResult*/, const TRealX& /*aVal*/) const
|
|
3164 |
/**
|
|
3165 |
Divides this extended precision number by an extended precision value.
|
|
3166 |
|
|
3167 |
@param aResult On return, a reference to an extended precision object
|
|
3168 |
containing the result of the operation.
|
|
3169 |
@param aVal The extended precision value to be used as the divisor.
|
|
3170 |
|
|
3171 |
@return KErrNone, if the operation is successful;
|
|
3172 |
KErrOverflow, if the operation results in overflow;
|
|
3173 |
KErrUnderflow, if the operation results in underflow;
|
|
3174 |
KErrDivideByZero, if the divisor is zero.
|
|
3175 |
*/
|
|
3176 |
{
|
|
3177 |
// on entry ecx=this, [esp+4]=address of aResult, [esp+8]=address of aVal
|
|
3178 |
THISCALL_PROLOG2()
|
|
3179 |
asm("push ecx"); // save registers
|
|
3180 |
asm("push ebx");
|
|
3181 |
asm("push ebp");
|
|
3182 |
asm("push esi");
|
|
3183 |
asm("push edi");
|
|
3184 |
asm("mov esi, ecx"); // this into esi
|
|
3185 |
asm("mov ecx, [esp+28]"); // address of aVal into ecx
|
|
3186 |
asm("mov ebx, [ecx]"); // aVal into ecx,edx:ebx
|
|
3187 |
asm("mov edx, [ecx+4]");
|
|
3188 |
asm("mov ecx, [ecx+8]");
|
|
3189 |
asm("call %a0": : "i"(&TRealXDivide)); // do division, result in ecx,edx:ebx, error code in eax
|
|
3190 |
asm("mov esi, [esp+24]"); // esi=address of aResult
|
|
3191 |
asm("mov [esi], ebx"); // store result
|
|
3192 |
asm("mov [esi+4], edx");
|
|
3193 |
asm("mov [esi+8], ecx");
|
|
3194 |
asm("pop edi"); // restore registers
|
|
3195 |
asm("pop esi");
|
|
3196 |
asm("pop ebp");
|
|
3197 |
asm("pop ebx");
|
|
3198 |
asm("pop ecx");
|
|
3199 |
THISCALL_EPILOG2() // return with error code in eax
|
|
3200 |
}
|
|
3201 |
|
|
3202 |
|
|
3203 |
|
|
3204 |
|
|
3205 |
__NAKED__ EXPORT_C TInt TRealX::Mod(TRealX& /*aResult*/, const TRealX& /*aVal*/) const
|
|
3206 |
/**
|
|
3207 |
Modulo-divides this extended precision number by an extended precision value.
|
|
3208 |
|
|
3209 |
@param aResult On return, a reference to an extended precision object
|
|
3210 |
containing the result of the operation.
|
|
3211 |
|
|
3212 |
@param aVal The extended precision value to be used as the divisor.
|
|
3213 |
|
|
3214 |
@return KErrNone, if the operation is successful;
|
|
3215 |
KErrTotalLossOfPrecision, if precision is lost;
|
|
3216 |
KErrUnderflow, if the operation results in underflow.
|
|
3217 |
*/
|
|
3218 |
{
|
|
3219 |
// on entry ecx=this, [esp+4]=address of aResult, [esp+8]=address of aVal
|
|
3220 |
THISCALL_PROLOG2()
|
|
3221 |
asm("push ecx"); // save registers
|
|
3222 |
asm("push ebx");
|
|
3223 |
asm("push ebp");
|
|
3224 |
asm("push esi");
|
|
3225 |
asm("push edi");
|
|
3226 |
asm("mov esi, ecx"); // this into esi
|
|
3227 |
asm("mov ecx, [esp+28]"); // address of aVal into ecx
|
|
3228 |
asm("mov ebx, [ecx]"); // aVal into ecx,edx:ebx
|
|
3229 |
asm("mov edx, [ecx+4]");
|
|
3230 |
asm("mov ecx, [ecx+8]");
|
|
3231 |
asm("call %a0": : "i"(&TRealXModulo)); // do modulo, result in ecx,edx:ebx, error code in eax
|
|
3232 |
asm("mov esi, [esp+24]"); // esi=address of aResult
|
|
3233 |
asm("mov [esi], ebx"); // store result
|
|
3234 |
asm("mov [esi+4], edx");
|
|
3235 |
asm("mov [esi+8], ecx");
|
|
3236 |
asm("pop edi"); // restore registers
|
|
3237 |
asm("pop esi");
|
|
3238 |
asm("pop ebp");
|
|
3239 |
asm("pop ebx");
|
|
3240 |
asm("pop ecx");
|
|
3241 |
THISCALL_EPILOG2() // return with error code in eax
|
|
3242 |
}
|
|
3243 |
|
|
3244 |
// Compare TRealX in ecx,edx:ebx (op1) to TRealX at [esi] (op2)
|
|
3245 |
// Return 1 if op1<op2
|
|
3246 |
// Return 2 if op1=op2
|
|
3247 |
// Return 4 if op1>op2
|
|
3248 |
// Return 8 if unordered
|
|
3249 |
// Return value in eax
|
|
3250 |
LOCAL_C __NAKED__ void TRealXCompare(void)
|
|
3251 |
{
|
|
3252 |
asm("cmp ecx, 0xFFFF0000"); // check if op1=NaN or infinity
|
|
3253 |
asm("jc short fpcmp1"); // branch if not
|
|
3254 |
asm("cmp edx, 0x80000000"); // check for infinity
|
|
3255 |
asm("jnz short fpcmpunord"); // branch if NaN
|
|
3256 |
asm("test ebx, ebx");
|
|
3257 |
asm("jz short fpcmp1"); // if infinity, process normally
|
|
3258 |
asm("fpcmpunord:"); // come here if unordered
|
|
3259 |
asm("mov eax, 8"); // return 8
|
|
3260 |
asm("ret");
|
|
3261 |
asm("fpcmp1:"); // op1 is not a NaN
|
|
3262 |
asm("mov eax, [esi+8]"); // get op2 into eax,edi:ebp
|
|
3263 |
asm("mov edi, [esi+4]");
|
|
3264 |
asm("mov ebp, [esi]");
|
|
3265 |
asm("cmp eax, 0xFFFF0000"); // check for NaN or infinity
|
|
3266 |
asm("jc short fpcmp2"); // branch if neither
|
|
3267 |
asm("cmp edi, 0x80000000"); // check for infinity
|
|
3268 |
asm("jnz short fpcmpunord"); // branch if NaN
|
|
3269 |
asm("test ebp, ebp");
|
|
3270 |
asm("jnz short fpcmpunord");
|
|
3271 |
asm("fpcmp2:"); // neither operand is a NaN
|
|
3272 |
asm("cmp ecx, 0x10000"); // check if op1=0
|
|
3273 |
asm("jc short fpcmpop1z"); // branch if it is
|
|
3274 |
asm("cmp eax, 0x10000"); // check if op2=0
|
|
3275 |
asm("jc short fpcmp4"); // branch if it is
|
|
3276 |
asm("xor al, cl"); // check if signs the same
|
|
3277 |
asm("test al, 1");
|
|
3278 |
asm("jnz short fpcmp4"); // branch if different
|
|
3279 |
asm("push ecx");
|
|
3280 |
asm("shr ecx, 16"); // op1 exponent into cx
|
|
3281 |
asm("shr eax, 16"); // op2 exponent into ax
|
|
3282 |
asm("cmp ecx, eax"); // compare exponents
|
|
3283 |
asm("pop ecx");
|
|
3284 |
asm("ja short fpcmp4"); // if op1 exp > op2 exp op1>op2 if +ve
|
|
3285 |
asm("jb short fpcmp5"); // if op1 exp < op2 exp op1<op2 if +ve
|
|
3286 |
asm("cmp edx, edi"); // else compare mantissa high words
|
|
3287 |
asm("ja short fpcmp4");
|
|
3288 |
asm("jb short fpcmp5");
|
|
3289 |
asm("cmp ebx, ebp"); // if equal compare mantissa low words
|
|
3290 |
asm("ja short fpcmp4");
|
|
3291 |
asm("jb short fpcmp5");
|
|
3292 |
asm("fpcmp0:");
|
|
3293 |
asm("mov eax, 2"); // numbers exactly equal
|
|
3294 |
asm("ret");
|
|
3295 |
asm("fpcmp4:"); // come here if ABS{op1}>ABS{op2} or if signs different
|
|
3296 |
// or if op2 zero, op1 nonzero
|
|
3297 |
asm("mov eax, 4"); // return 4 if +ve
|
|
3298 |
asm("test cl, 1"); // check sign
|
|
3299 |
asm("jz short fpcmp4a"); // skip if +
|
|
3300 |
asm("mov al, 1"); // return 1 if -ve
|
|
3301 |
asm("fpcmp4a:");
|
|
3302 |
asm("ret");
|
|
3303 |
asm("fpcmp5:"); // come here if ABS{op1}<ABS{op2}
|
|
3304 |
asm("mov eax, 1"); // return 1 if +ve
|
|
3305 |
asm("test cl, 1"); // check sign
|
|
3306 |
asm("jz short fpcmp5a"); // skip if +
|
|
3307 |
asm("mov al, 4"); // return 4 if -ve
|
|
3308 |
asm("fpcmp5a:");
|
|
3309 |
asm("ret");
|
|
3310 |
asm("fpcmpop1z:"); // come here if op1=0
|
|
3311 |
asm("cmp eax, 0x10000"); // check if op2 also zero
|
|
3312 |
asm("jc short fpcmp0"); // if so, they are equal
|
|
3313 |
asm("test al, 1"); // test sign of op 2
|
|
3314 |
asm("mov eax, 4"); // if -, return 4
|
|
3315 |
asm("jnz short fpcmpop1z2n"); // skip if -
|
|
3316 |
asm("mov al, 1"); // else return 1
|
|
3317 |
asm("fpcmpop1z2n:");
|
|
3318 |
asm("ret");
|
|
3319 |
}
|
|
3320 |
|
|
3321 |
|
|
3322 |
|
|
3323 |
|
|
3324 |
__NAKED__ EXPORT_C TRealX::TRealXOrder TRealX::Compare(const TRealX& /*aVal*/) const
|
|
3325 |
/**
|
|
3326 |
*/
|
|
3327 |
{
|
|
3328 |
// On entry ecx=this, [esp+4]=address of aVal
|
|
3329 |
THISCALL_PROLOG1()
|
|
3330 |
asm("push ecx"); // save registers
|
|
3331 |
asm("push ebx");
|
|
3332 |
asm("push ebp");
|
|
3333 |
asm("push esi");
|
|
3334 |
asm("push edi");
|
|
3335 |
asm("mov esi, [esp+24]"); // address of aVal into esi
|
|
3336 |
asm("mov ebx, [ecx]"); // *this into ecx,edx:ebx
|
|
3337 |
asm("mov edx, [ecx+4]");
|
|
3338 |
asm("mov ecx, [ecx+8]");
|
|
3339 |
asm("call %a0": : "i"(&TRealXCompare)); // result in eax
|
|
3340 |
asm("pop edi");
|
|
3341 |
asm("pop esi");
|
|
3342 |
asm("pop ebp");
|
|
3343 |
asm("pop ebx");
|
|
3344 |
asm("pop ecx");
|
|
3345 |
THISCALL_EPILOG1()
|
|
3346 |
}
|
|
3347 |
|
|
3348 |
|