0
|
1 |
// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
2 |
// All rights reserved.
|
|
3 |
// This component and the accompanying materials are made available
|
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
|
5 |
// which accompanies this distribution, and is available
|
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
7 |
//
|
|
8 |
// Initial Contributors:
|
|
9 |
// Nokia Corporation - initial contribution.
|
|
10 |
//
|
|
11 |
// Contributors:
|
|
12 |
//
|
|
13 |
// Description:
|
|
14 |
// e32\euser\maths\um_exp.cpp
|
|
15 |
// Floating point exponentiation
|
|
16 |
//
|
|
17 |
//
|
|
18 |
|
|
19 |
#include "um_std.h"
|
|
20 |
|
|
21 |
#if defined(__USE_VFP_MATH) && !defined(__CPU_HAS_VFP)
|
|
22 |
#error __USE_VFP_MATH was defined but not __CPU_HAS_VFP - impossible combination, check variant.mmh
|
|
23 |
#endif
|
|
24 |
|
|
25 |
#ifndef __USE_VFP_MATH
|
|
26 |
|
|
27 |
LOCAL_D const TUint32 ExpCoeffs[] =
|
|
28 |
{
|
|
29 |
0x00000000,0x80000000,0x7FFF0000, // polynomial approximation to 2^(x/8)
|
|
30 |
0xD1CF79AC,0xB17217F7,0x7FFB0000, // for 0<=x<=1
|
|
31 |
0x1591EF2B,0xF5FDEFFC,0x7FF60000,
|
|
32 |
0x23B940A9,0xE35846B9,0x7FF10000,
|
|
33 |
0xDD73C23F,0x9D955ADE,0x7FEC0000,
|
|
34 |
0x8728EBE7,0xAEC4616C,0x7FE60000,
|
|
35 |
0xAF177130,0xA1646F7D,0x7FE00000,
|
|
36 |
0xC44EAC22,0x8542C46E,0x7FDA0000
|
|
37 |
};
|
|
38 |
|
|
39 |
LOCAL_D const TUint32 TwoToNover8[] =
|
|
40 |
{
|
|
41 |
0xEA8BD6E7,0x8B95C1E3,0x7FFF0000, // 2^0.125
|
|
42 |
0x8DB8A96F,0x9837F051,0x7FFF0000, // 2^0.250
|
|
43 |
0xB15138EA,0xA5FED6A9,0x7FFF0000, // 2^0.375
|
|
44 |
0xF9DE6484,0xB504F333,0x7FFF0000, // 2^0.500
|
|
45 |
0x5506DADD,0xC5672A11,0x7FFF0000, // 2^0.625
|
|
46 |
0xD69D6AF4,0xD744FCCA,0x7FFF0000, // 2^0.750
|
|
47 |
0xDD24392F,0xEAC0C6E7,0x7FFF0000 // 2^0.875
|
|
48 |
};
|
|
49 |
|
|
50 |
LOCAL_D const TUint32 EightLog2edata[] = {0x5C17F0BC,0xB8AA3B29,0x80020000}; // 8/ln2
|
|
51 |
|
|
52 |
|
|
53 |
|
|
54 |
|
|
55 |
EXPORT_C TInt Math::Exp(TReal& aTrg, const TReal& aSrc)
|
|
56 |
/**
|
|
57 |
Calculates the value of e to the power of x.
|
|
58 |
|
|
59 |
@param aTrg A reference containing the result.
|
|
60 |
@param aSrc The power to which e is to be raised.
|
|
61 |
|
|
62 |
@return KErrNone if successful, otherwise another of
|
|
63 |
the system-wide error codes.
|
|
64 |
*/
|
|
65 |
{
|
|
66 |
// Calculate exp(aSrc) and write result to aTrg
|
|
67 |
// Algorithm:
|
|
68 |
// Let x=aSrc/ln2 and calculate 2^x
|
|
69 |
// 2^x = 2^int(x).2^frac(x)
|
|
70 |
// 2^int(x) just adds int(x) to the final result exponent
|
|
71 |
// Reduce frac(x) to the range [0,0.125] (modulo 0.125)
|
|
72 |
// Use polynomial to calculate 2^x for 0<=x<=0.125
|
|
73 |
// Multiply by 2^(n/8) for n=0,1,2,3,4,5,6,7 to give 2^frac(x)
|
|
74 |
|
|
75 |
const TRealX& EightLog2e=*(const TRealX*)EightLog2edata;
|
|
76 |
|
|
77 |
TRealX x;
|
|
78 |
TRealX y;
|
|
79 |
TInt r=x.Set(aSrc);
|
|
80 |
if (r==KErrNone)
|
|
81 |
{
|
|
82 |
x*=EightLog2e;
|
|
83 |
TInt n=(TInt)x;
|
|
84 |
if (n<16384 && n>-16384)
|
|
85 |
{
|
|
86 |
if (x.iSign&1)
|
|
87 |
n--;
|
|
88 |
x-=TRealX(n);
|
|
89 |
PolyX(y,x,7,(const TRealX*)ExpCoeffs);
|
|
90 |
y.iExp=TUint16(TInt(y.iExp)+(n>>3));
|
|
91 |
n&=7;
|
|
92 |
if (n)
|
|
93 |
y*= (*(const TRealX*)(TwoToNover8+3*n-3));
|
|
94 |
return y.GetTReal(aTrg);
|
|
95 |
}
|
|
96 |
else
|
|
97 |
{
|
|
98 |
if (n<0)
|
|
99 |
{
|
|
100 |
SetZero(aTrg);
|
|
101 |
r=KErrUnderflow;
|
|
102 |
}
|
|
103 |
else
|
|
104 |
{
|
|
105 |
SetInfinite(aTrg,0);
|
|
106 |
r=KErrOverflow;
|
|
107 |
}
|
|
108 |
return r;
|
|
109 |
}
|
|
110 |
}
|
|
111 |
else
|
|
112 |
{
|
|
113 |
if (r==KErrArgument)
|
|
114 |
SetNaN(aTrg);
|
|
115 |
if (r==KErrOverflow)
|
|
116 |
{
|
|
117 |
if (x.iSign&1)
|
|
118 |
{
|
|
119 |
SetZero(aTrg);
|
|
120 |
r=KErrUnderflow;
|
|
121 |
}
|
|
122 |
else
|
|
123 |
{
|
|
124 |
SetInfinite(aTrg,0);
|
|
125 |
}
|
|
126 |
}
|
|
127 |
return r;
|
|
128 |
}
|
|
129 |
}
|
|
130 |
|
|
131 |
#else // __USE_VFP_MATH
|
|
132 |
|
|
133 |
// definitions come from RVCT math library
|
|
134 |
extern "C" TReal exp(TReal);
|
|
135 |
|
|
136 |
EXPORT_C TInt Math::Exp(TReal& aTrg, const TReal& aSrc)
|
|
137 |
{
|
|
138 |
aTrg = exp(aSrc);
|
|
139 |
if (Math::IsZero(aTrg))
|
|
140 |
return KErrUnderflow;
|
|
141 |
if (Math::IsFinite(aTrg))
|
|
142 |
return KErrNone;
|
|
143 |
if (Math::IsInfinite(aTrg))
|
|
144 |
return KErrOverflow;
|
|
145 |
SetNaN(aTrg);
|
|
146 |
return KErrArgument;
|
|
147 |
}
|
|
148 |
|
|
149 |
#endif
|