|
1 // Copyright (c) 1994-2009 Nokia Corporation and/or its subsidiary(-ies). |
|
2 // All rights reserved. |
|
3 // This component and the accompanying materials are made available |
|
4 // under the terms of the License "Eclipse Public License v1.0" |
|
5 // which accompanies this distribution, and is available |
|
6 // at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
7 // |
|
8 // Initial Contributors: |
|
9 // Nokia Corporation - initial contribution. |
|
10 // |
|
11 // Contributors: |
|
12 // |
|
13 // Description: |
|
14 // kernel\eka\common\debugfunction.cpp |
|
15 // |
|
16 // |
|
17 |
|
18 #include "common.h" |
|
19 #ifdef __KERNEL_MODE__ |
|
20 #include <kernel/kern_priv.h> |
|
21 #endif |
|
22 #include "dla.h" |
|
23 #ifndef __KERNEL_MODE__ |
|
24 #include "slab.h" |
|
25 #include "page_alloc.h" |
|
26 #endif |
|
27 #include "heap_hybrid.h" |
|
28 |
|
29 #define GM (&iGlobalMallocState) |
|
30 #define __HEAP_CORRUPTED_TRACE(t,p,l) BTraceContext12(BTrace::EHeap, BTrace::EHeapCorruption, (TUint32)t, (TUint32)p, (TUint32)l); |
|
31 #define __HEAP_CORRUPTED_TEST(c,x, p,l) if (!c) { if (iFlags & (EMonitorMemory+ETraceAllocs) ) __HEAP_CORRUPTED_TRACE(this,p,l) HEAP_PANIC(x); } |
|
32 #define __HEAP_CORRUPTED_TEST_STATIC(c,t,x,p,l) if (!c) { if (t && (t->iFlags & (EMonitorMemory+ETraceAllocs) )) __HEAP_CORRUPTED_TRACE(t,p,l) HEAP_PANIC(x); } |
|
33 |
|
34 TInt RHybridHeap::DebugFunction(TInt aFunc, TAny* a1, TAny* a2) |
|
35 { |
|
36 TInt r = KErrNone; |
|
37 switch(aFunc) |
|
38 { |
|
39 |
|
40 case RAllocator::ECount: |
|
41 struct HeapInfo info; |
|
42 Lock(); |
|
43 GetInfo(&info, NULL); |
|
44 *(unsigned*)a1 = info.iFreeN; |
|
45 r = info.iAllocN; |
|
46 Unlock(); |
|
47 break; |
|
48 |
|
49 case RAllocator::EMarkStart: |
|
50 __DEBUG_ONLY(DoMarkStart()); |
|
51 break; |
|
52 |
|
53 case RAllocator::EMarkEnd: |
|
54 __DEBUG_ONLY( r = DoMarkEnd((TInt)a1) ); |
|
55 break; |
|
56 |
|
57 case RAllocator::ECheck: |
|
58 r = DoCheckHeap((SCheckInfo*)a1); |
|
59 break; |
|
60 |
|
61 case RAllocator::ESetFail: |
|
62 __DEBUG_ONLY(DoSetAllocFail((TAllocFail)(TInt)a1, (TInt)a2)); |
|
63 break; |
|
64 |
|
65 case RAllocator::EGetFail: |
|
66 __DEBUG_ONLY(r = iFailType); |
|
67 break; |
|
68 |
|
69 case RAllocator::ESetBurstFail: |
|
70 #if _DEBUG |
|
71 { |
|
72 SRAllocatorBurstFail* fail = (SRAllocatorBurstFail*) a2; |
|
73 DoSetAllocFail((TAllocFail)(TInt)a1, fail->iRate, fail->iBurst); |
|
74 } |
|
75 #endif |
|
76 break; |
|
77 |
|
78 case RAllocator::ECheckFailure: |
|
79 // iRand will be incremented for each EFailNext, EBurstFailNext, |
|
80 // EDeterministic and EBurstDeterministic failure. |
|
81 r = iRand; |
|
82 break; |
|
83 |
|
84 case RAllocator::ECopyDebugInfo: |
|
85 { |
|
86 TInt nestingLevel = ((SDebugCell*)a1)[-1].nestingLevel; |
|
87 ((SDebugCell*)a2)[-1].nestingLevel = nestingLevel; |
|
88 break; |
|
89 } |
|
90 |
|
91 case RAllocator::EGetSize: |
|
92 { |
|
93 r = iChunkSize - sizeof(RHybridHeap); |
|
94 break; |
|
95 } |
|
96 |
|
97 case RAllocator::EGetMaxLength: |
|
98 { |
|
99 r = iMaxLength; |
|
100 break; |
|
101 } |
|
102 |
|
103 case RAllocator::EGetBase: |
|
104 { |
|
105 *(TAny**)a1 = iBase; |
|
106 break; |
|
107 } |
|
108 |
|
109 case RAllocator::EAlignInteger: |
|
110 { |
|
111 r = _ALIGN_UP((TInt)a1, iAlign); |
|
112 break; |
|
113 } |
|
114 |
|
115 case RAllocator::EAlignAddr: |
|
116 { |
|
117 *(TAny**)a2 = (TAny*)_ALIGN_UP((TLinAddr)a1, iAlign); |
|
118 break; |
|
119 } |
|
120 |
|
121 case RHybridHeap::EWalk: |
|
122 struct HeapInfo hinfo; |
|
123 SWalkInfo winfo; |
|
124 Lock(); |
|
125 winfo.iFunction = (TWalkFunc)a1; |
|
126 winfo.iParam = a2; |
|
127 winfo.iHeap = (RHybridHeap*)this; |
|
128 GetInfo(&hinfo, &winfo); |
|
129 Unlock(); |
|
130 break; |
|
131 |
|
132 #ifndef __KERNEL_MODE__ |
|
133 |
|
134 case RHybridHeap::EHybridHeap: |
|
135 { |
|
136 if ( !a1 ) |
|
137 return KErrGeneral; |
|
138 STestCommand* cmd = (STestCommand*)a1; |
|
139 switch ( cmd->iCommand ) |
|
140 { |
|
141 case EGetConfig: |
|
142 cmd->iConfig.iSlabBits = iSlabConfigBits; |
|
143 cmd->iConfig.iDelayedSlabThreshold = iPageThreshold; |
|
144 cmd->iConfig.iPagePower = iPageThreshold; |
|
145 break; |
|
146 |
|
147 case ESetConfig: |
|
148 // |
|
149 // New configuration data for slab and page allocator. |
|
150 // Reset heap to get data into use |
|
151 // |
|
152 #if USE_HYBRID_HEAP |
|
153 iSlabConfigBits = cmd->iConfig.iSlabBits & 0x3fff; |
|
154 iSlabInitThreshold = cmd->iConfig.iDelayedSlabThreshold; |
|
155 iPageThreshold = (cmd->iConfig.iPagePower & 0x1f); |
|
156 Reset(); |
|
157 #endif |
|
158 break; |
|
159 |
|
160 case EHeapMetaData: |
|
161 cmd->iData = this; |
|
162 break; |
|
163 |
|
164 case ETestData: |
|
165 iTestData = cmd->iData; |
|
166 break; |
|
167 |
|
168 default: |
|
169 return KErrNotSupported; |
|
170 |
|
171 } |
|
172 |
|
173 break; |
|
174 } |
|
175 #endif // __KERNEL_MODE |
|
176 |
|
177 default: |
|
178 return KErrNotSupported; |
|
179 |
|
180 } |
|
181 return r; |
|
182 } |
|
183 |
|
184 void RHybridHeap::Walk(SWalkInfo* aInfo, TAny* aBfr, TInt aLth, TCellType aBfrType, TAllocatorType aAllocatorType) |
|
185 { |
|
186 // |
|
187 // This function is always called from RHybridHeap::GetInfo. |
|
188 // Actual walk function is called if SWalkInfo pointer is defined |
|
189 // |
|
190 // |
|
191 if ( aInfo ) |
|
192 { |
|
193 #ifdef __KERNEL_MODE__ |
|
194 (void)aAllocatorType; |
|
195 #if defined(_DEBUG) |
|
196 if ( aBfrType == EGoodAllocatedCell ) |
|
197 aInfo->iFunction(aInfo->iParam, aBfrType, ((TUint8*)aBfr+EDebugHdrSize), (aLth-EDebugHdrSize) ); |
|
198 else |
|
199 aInfo->iFunction(aInfo->iParam, aBfrType, aBfr, aLth ); |
|
200 #else |
|
201 aInfo->iFunction(aInfo->iParam, aBfrType, aBfr, aLth ); |
|
202 #endif |
|
203 |
|
204 #else // __KERNEL_MODE__ |
|
205 |
|
206 if ( aAllocatorType & (EFullSlab + EPartialFullSlab + EEmptySlab + ESlabSpare) ) |
|
207 { |
|
208 if ( aInfo->iHeap ) |
|
209 { |
|
210 TUint32 dummy; |
|
211 TInt npages; |
|
212 aInfo->iHeap->DoCheckSlab((slab*)aBfr, aAllocatorType); |
|
213 __HEAP_CORRUPTED_TEST_STATIC(aInfo->iHeap->CheckBitmap(Floor(aBfr, PAGESIZE), PAGESIZE, dummy, npages), |
|
214 aInfo->iHeap, ETHeapBadCellAddress, aBfr, aLth); |
|
215 } |
|
216 if ( aAllocatorType & EPartialFullSlab ) |
|
217 WalkPartialFullSlab(aInfo, (slab*)aBfr, aBfrType, aLth); |
|
218 else if ( aAllocatorType & EFullSlab ) |
|
219 WalkFullSlab(aInfo, (slab*)aBfr, aBfrType, aLth); |
|
220 } |
|
221 #if defined(_DEBUG) |
|
222 else if ( aBfrType == EGoodAllocatedCell ) |
|
223 aInfo->iFunction(aInfo->iParam, aBfrType, ((TUint8*)aBfr+EDebugHdrSize), (aLth-EDebugHdrSize) ); |
|
224 else |
|
225 aInfo->iFunction(aInfo->iParam, aBfrType, aBfr, aLth ); |
|
226 #else |
|
227 else |
|
228 aInfo->iFunction(aInfo->iParam, aBfrType, aBfr, aLth ); |
|
229 #endif |
|
230 |
|
231 #endif // __KERNEL_MODE |
|
232 } |
|
233 } |
|
234 |
|
235 #ifndef __KERNEL_MODE__ |
|
236 void RHybridHeap::WalkPartialFullSlab(SWalkInfo* aInfo, slab* aSlab, TCellType /*aBfrType*/, TInt /*aLth*/) |
|
237 { |
|
238 if ( aInfo ) |
|
239 { |
|
240 // |
|
241 // Build bitmap of free buffers in the partial full slab |
|
242 // |
|
243 TUint32 bitmap[4]; |
|
244 __HEAP_CORRUPTED_TEST_STATIC( (aInfo->iHeap != NULL), aInfo->iHeap, ETHeapBadCellAddress, 0, aSlab); |
|
245 aInfo->iHeap->BuildPartialSlabBitmap(bitmap, aSlab); |
|
246 // |
|
247 // Find used (allocated) buffers from iPartial full slab |
|
248 // |
|
249 TUint32 h = aSlab->iHeader; |
|
250 TUint32 size = SlabHeaderSize(h); |
|
251 TUint32 count = KMaxSlabPayload / size; // Total buffer count in slab |
|
252 TUint32 i = 0; |
|
253 TUint32 ix = 0; |
|
254 TUint32 bit = 1; |
|
255 |
|
256 while ( i < count ) |
|
257 { |
|
258 |
|
259 if ( bitmap[ix] & bit ) |
|
260 { |
|
261 aInfo->iFunction(aInfo->iParam, EGoodFreeCell, &aSlab->iPayload[i*size], size ); |
|
262 } |
|
263 else |
|
264 { |
|
265 #if defined(_DEBUG) |
|
266 aInfo->iFunction(aInfo->iParam, EGoodAllocatedCell, (&aSlab->iPayload[i*size]+EDebugHdrSize), (size-EDebugHdrSize) ); |
|
267 #else |
|
268 aInfo->iFunction(aInfo->iParam, EGoodAllocatedCell, &aSlab->iPayload[i*size], size ); |
|
269 #endif |
|
270 } |
|
271 bit <<= 1; |
|
272 if ( bit == 0 ) |
|
273 { |
|
274 bit = 1; |
|
275 ix ++; |
|
276 } |
|
277 |
|
278 i ++; |
|
279 } |
|
280 } |
|
281 |
|
282 } |
|
283 |
|
284 void RHybridHeap::WalkFullSlab(SWalkInfo* aInfo, slab* aSlab, TCellType aBfrType, TInt /*aLth*/) |
|
285 { |
|
286 if ( aInfo ) |
|
287 { |
|
288 TUint32 h = aSlab->iHeader; |
|
289 TUint32 size = SlabHeaderSize(h); |
|
290 TUint32 count = (SlabHeaderUsedm4(h) + 4) / size; |
|
291 TUint32 i = 0; |
|
292 while ( i < count ) |
|
293 { |
|
294 #if defined(_DEBUG) |
|
295 if ( aBfrType == EGoodAllocatedCell ) |
|
296 aInfo->iFunction(aInfo->iParam, aBfrType, (&aSlab->iPayload[i*size]+EDebugHdrSize), (size-EDebugHdrSize) ); |
|
297 else |
|
298 aInfo->iFunction(aInfo->iParam, aBfrType, &aSlab->iPayload[i*size], size ); |
|
299 #else |
|
300 aInfo->iFunction(aInfo->iParam, aBfrType, &aSlab->iPayload[i*size], size ); |
|
301 #endif |
|
302 i ++; |
|
303 } |
|
304 } |
|
305 } |
|
306 |
|
307 void RHybridHeap::BuildPartialSlabBitmap(TUint32* aBitmap, slab* aSlab, TAny* aBfr) |
|
308 { |
|
309 // |
|
310 // Build a bitmap of free buffers in a partial full slab |
|
311 // |
|
312 TInt i; |
|
313 TUint32 bit = 0; |
|
314 TUint32 index; |
|
315 TUint32 h = aSlab->iHeader; |
|
316 TUint32 used = SlabHeaderUsedm4(h)+4; |
|
317 TUint32 size = SlabHeaderSize(h); |
|
318 TInt count = (KMaxSlabPayload / size); |
|
319 TInt free_count = count - (used / size); // Total free buffer count in slab |
|
320 aBitmap[0] = 0, aBitmap[1] = 0, aBitmap[2] = 0, aBitmap[3] = 0; |
|
321 TUint32 offs = (h & 0xff) << 2; |
|
322 |
|
323 // |
|
324 // Process first buffer in partial slab free buffer chain |
|
325 // |
|
326 while ( offs ) |
|
327 { |
|
328 unsigned char* p = (unsigned char*)Offset(aSlab, offs); |
|
329 __HEAP_CORRUPTED_TEST( (sizeof(slabhdr) <= offs), ETHeapBadCellAddress, p, aSlab); |
|
330 offs -= sizeof(slabhdr); |
|
331 __HEAP_CORRUPTED_TEST( (offs % size == 0), ETHeapBadCellAddress, p, aSlab); |
|
332 index = (offs / size); // Bit index in bitmap |
|
333 i = 0; |
|
334 while ( i < 4 ) |
|
335 { |
|
336 if ( index < 32 ) |
|
337 { |
|
338 bit = (1 << index); |
|
339 break; |
|
340 } |
|
341 index -= 32; |
|
342 i ++; |
|
343 } |
|
344 |
|
345 __HEAP_CORRUPTED_TEST( ((aBitmap[i] & bit) == 0), ETHeapBadCellAddress, p, aSlab); // Buffer already in chain |
|
346 |
|
347 aBitmap[i] |= bit; |
|
348 free_count --; |
|
349 offs = ((unsigned)*p) << 2; // Next in free chain |
|
350 } |
|
351 |
|
352 __HEAP_CORRUPTED_TEST( (free_count >= 0), ETHeapBadCellAddress, aBfr, aSlab); // free buffer count/size mismatch |
|
353 // |
|
354 // Process next rest of the free buffers which are in the |
|
355 // wilderness (at end of the slab) |
|
356 // |
|
357 index = count - 1; |
|
358 i = index / 32; |
|
359 index = index % 32; |
|
360 while ( free_count && (i >= 0)) |
|
361 { |
|
362 bit = (1 << index); |
|
363 __HEAP_CORRUPTED_TEST( ((aBitmap[i] & bit) == 0), ETHeapBadCellAddress, aBfr, aSlab); // Buffer already in chain |
|
364 aBitmap[i] |= bit; |
|
365 if ( index ) |
|
366 index --; |
|
367 else |
|
368 { |
|
369 index = 31; |
|
370 i --; |
|
371 } |
|
372 free_count --; |
|
373 } |
|
374 |
|
375 if ( aBfr ) // Assure that specified buffer does NOT exist in partial slab free buffer chain |
|
376 { |
|
377 offs = LowBits(aBfr, SLABSIZE); |
|
378 __HEAP_CORRUPTED_TEST( (sizeof(slabhdr) <= offs), ETHeapBadCellAddress, aBfr, aSlab); |
|
379 offs -= sizeof(slabhdr); |
|
380 __HEAP_CORRUPTED_TEST( ((offs % size) == 0), ETHeapBadCellAddress, aBfr, aSlab); |
|
381 index = (offs / size); // Bit index in bitmap |
|
382 i = 0; |
|
383 while ( i < 4 ) |
|
384 { |
|
385 if ( index < 32 ) |
|
386 { |
|
387 bit = (1 << index); |
|
388 break; |
|
389 } |
|
390 index -= 32; |
|
391 i ++; |
|
392 } |
|
393 __HEAP_CORRUPTED_TEST( ((aBitmap[i] & bit) == 0), ETHeapBadCellAddress, aBfr, aSlab); // Buffer already in chain |
|
394 } |
|
395 } |
|
396 |
|
397 #endif // __KERNEL_MODE__ |
|
398 |
|
399 void RHybridHeap::WalkCheckCell(TAny* aPtr, TCellType aType, TAny* aCell, TInt aLen) |
|
400 { |
|
401 (void)aCell; |
|
402 SHeapCellInfo& info = *(SHeapCellInfo*)aPtr; |
|
403 switch(aType) |
|
404 { |
|
405 case EGoodAllocatedCell: |
|
406 { |
|
407 ++info.iTotalAlloc; |
|
408 info.iTotalAllocSize += aLen; |
|
409 #if defined(_DEBUG) |
|
410 RHybridHeap& h = *info.iHeap; |
|
411 SDebugCell* DbgCell = (SDebugCell*)((TUint8*)aCell-EDebugHdrSize); |
|
412 if ( DbgCell->nestingLevel == h.iNestingLevel ) |
|
413 { |
|
414 if (++info.iLevelAlloc==1) |
|
415 info.iStranded = DbgCell; |
|
416 #ifdef __KERNEL_MODE__ |
|
417 if (KDebugNum(KSERVER) || KDebugNum(KTESTFAST)) |
|
418 { |
|
419 Kern::Printf("LEAKED KERNEL HEAP CELL @ %08x : len=%d", aCell, aLen); |
|
420 TLinAddr base = ((TLinAddr)aCell)&~0x0f; |
|
421 TLinAddr end = ((TLinAddr)aCell)+(TLinAddr)aLen; |
|
422 while(base<end) |
|
423 { |
|
424 const TUint32* p = (const TUint32*)base; |
|
425 Kern::Printf("%08x: %08x %08x %08x %08x", p, p[0], p[1], p[2], p[3]); |
|
426 base += 16; |
|
427 } |
|
428 } |
|
429 #endif |
|
430 } |
|
431 #endif |
|
432 break; |
|
433 } |
|
434 case EGoodFreeCell: |
|
435 ++info.iTotalFree; |
|
436 break; |
|
437 case EBadAllocatedCellSize: |
|
438 HEAP_PANIC(ETHeapBadAllocatedCellSize); |
|
439 case EBadAllocatedCellAddress: |
|
440 HEAP_PANIC(ETHeapBadAllocatedCellAddress); |
|
441 case EBadFreeCellAddress: |
|
442 HEAP_PANIC(ETHeapBadFreeCellAddress); |
|
443 case EBadFreeCellSize: |
|
444 HEAP_PANIC(ETHeapBadFreeCellSize); |
|
445 default: |
|
446 HEAP_PANIC(ETHeapWalkBadCellType); |
|
447 } |
|
448 } |
|
449 |
|
450 |
|
451 TInt RHybridHeap::DoCheckHeap(SCheckInfo* aInfo) |
|
452 { |
|
453 (void)aInfo; |
|
454 SHeapCellInfo info; |
|
455 memclr(&info, sizeof(info)); |
|
456 info.iHeap = this; |
|
457 struct HeapInfo hinfo; |
|
458 SWalkInfo winfo; |
|
459 Lock(); |
|
460 DoCheckMallocState(GM); // Check DL heap internal structure |
|
461 #ifndef __KERNEL_MODE__ |
|
462 TUint32 dummy; |
|
463 TInt npages; |
|
464 __HEAP_CORRUPTED_TEST(CheckBitmap(NULL, 0, dummy, npages), ETHeapBadCellAddress, this, 0); // Check page allocator buffers |
|
465 DoCheckSlabTrees(); |
|
466 DoCheckCommittedSize(npages, GM); |
|
467 #endif |
|
468 winfo.iFunction = WalkCheckCell; |
|
469 winfo.iParam = &info; |
|
470 winfo.iHeap = (RHybridHeap*)this; |
|
471 GetInfo(&hinfo, &winfo); |
|
472 Unlock(); |
|
473 |
|
474 #if defined(_DEBUG) |
|
475 if (!aInfo) |
|
476 return KErrNone; |
|
477 TInt expected = aInfo->iCount; |
|
478 TInt actual = aInfo->iAll ? info.iTotalAlloc : info.iLevelAlloc; |
|
479 if (actual!=expected && !iTestData) |
|
480 { |
|
481 #ifdef __KERNEL_MODE__ |
|
482 Kern::Fault("KERN-ALLOC COUNT", (expected<<16)|actual ); |
|
483 #else |
|
484 User::Panic(_L("ALLOC COUNT"), (expected<<16)|actual ); |
|
485 #endif |
|
486 } |
|
487 #endif |
|
488 return KErrNone; |
|
489 } |
|
490 |
|
491 #ifdef _DEBUG |
|
492 void RHybridHeap::DoMarkStart() |
|
493 { |
|
494 if (iNestingLevel==0) |
|
495 iAllocCount=0; |
|
496 iNestingLevel++; |
|
497 } |
|
498 |
|
499 TUint32 RHybridHeap::DoMarkEnd(TInt aExpected) |
|
500 { |
|
501 if (iNestingLevel==0) |
|
502 return 0; |
|
503 SHeapCellInfo info; |
|
504 SHeapCellInfo* p = iTestData ? (SHeapCellInfo*)iTestData : &info; |
|
505 memclr(p, sizeof(info)); |
|
506 p->iHeap = this; |
|
507 struct HeapInfo hinfo; |
|
508 SWalkInfo winfo; |
|
509 Lock(); |
|
510 winfo.iFunction = WalkCheckCell; |
|
511 winfo.iParam = p; |
|
512 winfo.iHeap = (RHybridHeap*)this; |
|
513 GetInfo(&hinfo, &winfo); |
|
514 Unlock(); |
|
515 |
|
516 if (p->iLevelAlloc != aExpected && !iTestData) |
|
517 return (TUint32)(p->iStranded + 1); |
|
518 if (--iNestingLevel == 0) |
|
519 iAllocCount = 0; |
|
520 return 0; |
|
521 } |
|
522 |
|
523 void RHybridHeap::DoSetAllocFail(TAllocFail aType, TInt aRate) |
|
524 {// Default to a burst mode of 1, as aType may be a burst type. |
|
525 DoSetAllocFail(aType, aRate, 1); |
|
526 } |
|
527 |
|
528 void ResetAllocCellLevels(TAny* aPtr, RHybridHeap::TCellType aType, TAny* aCell, TInt aLen) |
|
529 { |
|
530 (void)aPtr; |
|
531 (void)aLen; |
|
532 |
|
533 if (aType == RHybridHeap::EGoodAllocatedCell) |
|
534 { |
|
535 RHybridHeap::SDebugCell* DbgCell = (RHybridHeap::SDebugCell*)((TUint8*)aCell-RHeap::EDebugHdrSize); |
|
536 DbgCell->nestingLevel = 0; |
|
537 } |
|
538 } |
|
539 |
|
540 // Don't change as the ETHeapBadDebugFailParameter check below and the API |
|
541 // documentation rely on this being 16 for RHybridHeap. |
|
542 LOCAL_D const TInt KBurstFailRateShift = 16; |
|
543 LOCAL_D const TInt KBurstFailRateMask = (1 << KBurstFailRateShift) - 1; |
|
544 |
|
545 void RHybridHeap::DoSetAllocFail(TAllocFail aType, TInt aRate, TUint aBurst) |
|
546 { |
|
547 if (aType==EReset) |
|
548 { |
|
549 // reset levels of all allocated cells to 0 |
|
550 // this should prevent subsequent tests failing unnecessarily |
|
551 iFailed = EFalse; // Reset for ECheckFailure relies on this. |
|
552 struct HeapInfo hinfo; |
|
553 SWalkInfo winfo; |
|
554 Lock(); |
|
555 winfo.iFunction = (TWalkFunc)&ResetAllocCellLevels; |
|
556 winfo.iParam = NULL; |
|
557 winfo.iHeap = (RHybridHeap*)this; |
|
558 GetInfo(&hinfo, &winfo); |
|
559 Unlock(); |
|
560 // reset heap allocation mark as well |
|
561 iNestingLevel=0; |
|
562 iAllocCount=0; |
|
563 aType=ENone; |
|
564 } |
|
565 |
|
566 switch (aType) |
|
567 { |
|
568 case EBurstRandom: |
|
569 case EBurstTrueRandom: |
|
570 case EBurstDeterministic: |
|
571 case EBurstFailNext: |
|
572 // If the fail type is a burst type then iFailRate is split in 2: |
|
573 // the 16 lsbs are the fail rate and the 16 msbs are the burst length. |
|
574 if (TUint(aRate) > (TUint)KMaxTUint16 || aBurst > KMaxTUint16) |
|
575 HEAP_PANIC(ETHeapBadDebugFailParameter); |
|
576 |
|
577 iFailed = EFalse; |
|
578 iFailType = aType; |
|
579 iFailRate = (aRate == 0) ? 1 : aRate; |
|
580 iFailAllocCount = -iFailRate; |
|
581 iFailRate = iFailRate | (aBurst << KBurstFailRateShift); |
|
582 break; |
|
583 |
|
584 default: |
|
585 iFailed = EFalse; |
|
586 iFailType = aType; |
|
587 iFailRate = (aRate == 0) ? 1 : aRate; // A rate of <1 is meaningless |
|
588 iFailAllocCount = 0; |
|
589 break; |
|
590 } |
|
591 |
|
592 // Set up iRand for either: |
|
593 // - random seed value, or |
|
594 // - a count of the number of failures so far. |
|
595 iRand = 0; |
|
596 #ifndef __KERNEL_MODE__ |
|
597 switch (iFailType) |
|
598 { |
|
599 case ETrueRandom: |
|
600 case EBurstTrueRandom: |
|
601 { |
|
602 TTime time; |
|
603 time.HomeTime(); |
|
604 TInt64 seed = time.Int64(); |
|
605 iRand = Math::Rand(seed); |
|
606 break; |
|
607 } |
|
608 case ERandom: |
|
609 case EBurstRandom: |
|
610 { |
|
611 TInt64 seed = 12345; |
|
612 iRand = Math::Rand(seed); |
|
613 break; |
|
614 } |
|
615 default: |
|
616 break; |
|
617 } |
|
618 #endif |
|
619 } |
|
620 |
|
621 TBool RHybridHeap::CheckForSimulatedAllocFail() |
|
622 // |
|
623 // Check to see if the user has requested simulated alloc failure, and if so possibly |
|
624 // Return ETrue indicating a failure. |
|
625 // |
|
626 { |
|
627 // For burst mode failures iFailRate is shared |
|
628 TUint16 rate = (TUint16)(iFailRate & KBurstFailRateMask); |
|
629 TUint16 burst = (TUint16)(iFailRate >> KBurstFailRateShift); |
|
630 TBool r = EFalse; |
|
631 switch (iFailType) |
|
632 { |
|
633 #ifndef __KERNEL_MODE__ |
|
634 case ERandom: |
|
635 case ETrueRandom: |
|
636 if (++iFailAllocCount>=iFailRate) |
|
637 { |
|
638 iFailAllocCount=0; |
|
639 if (!iFailed) // haven't failed yet after iFailRate allocations so fail now |
|
640 return(ETrue); |
|
641 iFailed=EFalse; |
|
642 } |
|
643 else |
|
644 { |
|
645 if (!iFailed) |
|
646 { |
|
647 TInt64 seed=iRand; |
|
648 iRand=Math::Rand(seed); |
|
649 if (iRand%iFailRate==0) |
|
650 { |
|
651 iFailed=ETrue; |
|
652 return(ETrue); |
|
653 } |
|
654 } |
|
655 } |
|
656 break; |
|
657 |
|
658 case EBurstRandom: |
|
659 case EBurstTrueRandom: |
|
660 if (++iFailAllocCount < 0) |
|
661 { |
|
662 // We haven't started failing yet so should we now? |
|
663 TInt64 seed = iRand; |
|
664 iRand = Math::Rand(seed); |
|
665 if (iRand % rate == 0) |
|
666 {// Fail now. Reset iFailAllocCount so we fail burst times |
|
667 iFailAllocCount = 0; |
|
668 r = ETrue; |
|
669 } |
|
670 } |
|
671 else |
|
672 { |
|
673 if (iFailAllocCount < burst) |
|
674 {// Keep failing for burst times |
|
675 r = ETrue; |
|
676 } |
|
677 else |
|
678 {// We've now failed burst times so start again. |
|
679 iFailAllocCount = -(rate - 1); |
|
680 } |
|
681 } |
|
682 break; |
|
683 #endif |
|
684 case EDeterministic: |
|
685 if (++iFailAllocCount%iFailRate==0) |
|
686 { |
|
687 r=ETrue; |
|
688 iRand++; // Keep count of how many times we have failed |
|
689 } |
|
690 break; |
|
691 |
|
692 case EBurstDeterministic: |
|
693 // This will fail burst number of times, every rate attempts. |
|
694 if (++iFailAllocCount >= 0) |
|
695 { |
|
696 if (iFailAllocCount == burst - 1) |
|
697 {// This is the burst time we have failed so make it the last by |
|
698 // reseting counts so we next fail after rate attempts. |
|
699 iFailAllocCount = -rate; |
|
700 } |
|
701 r = ETrue; |
|
702 iRand++; // Keep count of how many times we have failed |
|
703 } |
|
704 break; |
|
705 |
|
706 case EFailNext: |
|
707 if ((++iFailAllocCount%iFailRate)==0) |
|
708 { |
|
709 iFailType=ENone; |
|
710 r=ETrue; |
|
711 iRand++; // Keep count of how many times we have failed |
|
712 } |
|
713 break; |
|
714 |
|
715 case EBurstFailNext: |
|
716 if (++iFailAllocCount >= 0) |
|
717 { |
|
718 if (iFailAllocCount == burst - 1) |
|
719 {// This is the burst time we have failed so make it the last. |
|
720 iFailType = ENone; |
|
721 } |
|
722 r = ETrue; |
|
723 iRand++; // Keep count of how many times we have failed |
|
724 } |
|
725 break; |
|
726 |
|
727 default: |
|
728 break; |
|
729 } |
|
730 return r; |
|
731 } |
|
732 |
|
733 #endif // DEBUG |
|
734 |
|
735 // |
|
736 // Methods for Doug Lea allocator detailed check |
|
737 // |
|
738 |
|
739 void RHybridHeap::DoCheckAnyChunk(mstate m, mchunkptr p) |
|
740 { |
|
741 __HEAP_CORRUPTED_TEST(((IS_ALIGNED(CHUNK2MEM(p))) || (p->iHead == FENCEPOST_HEAD)), ETHeapBadCellAddress, p, 0); |
|
742 (void)m; |
|
743 } |
|
744 |
|
745 /* Check properties of iTop chunk */ |
|
746 void RHybridHeap::DoCheckTopChunk(mstate m, mchunkptr p) |
|
747 { |
|
748 msegmentptr sp = &m->iSeg; |
|
749 size_t sz = CHUNKSIZE(p); |
|
750 __HEAP_CORRUPTED_TEST((sp != 0), ETHeapBadCellAddress, p, 0); |
|
751 __HEAP_CORRUPTED_TEST(((IS_ALIGNED(CHUNK2MEM(p))) || (p->iHead == FENCEPOST_HEAD)), ETHeapBadCellAddress, p,0); |
|
752 __HEAP_CORRUPTED_TEST((sz == m->iTopSize), ETHeapBadCellAddress,p,0); |
|
753 __HEAP_CORRUPTED_TEST((sz > 0), ETHeapBadCellAddress,p,0); |
|
754 __HEAP_CORRUPTED_TEST((sz == ((sp->iBase + sp->iSize) - (TUint8*)p) - TOP_FOOT_SIZE), ETHeapBadCellAddress,p,0); |
|
755 __HEAP_CORRUPTED_TEST((PINUSE(p)), ETHeapBadCellAddress,p,0); |
|
756 __HEAP_CORRUPTED_TEST((!NEXT_PINUSE(p)), ETHeapBadCellAddress,p,0); |
|
757 } |
|
758 |
|
759 /* Check properties of inuse chunks */ |
|
760 void RHybridHeap::DoCheckInuseChunk(mstate m, mchunkptr p) |
|
761 { |
|
762 DoCheckAnyChunk(m, p); |
|
763 __HEAP_CORRUPTED_TEST((CINUSE(p)), ETHeapBadCellAddress,p,0); |
|
764 __HEAP_CORRUPTED_TEST((NEXT_PINUSE(p)), ETHeapBadCellAddress,p,0); |
|
765 /* If not PINUSE and not mmapped, previous chunk has OK offset */ |
|
766 __HEAP_CORRUPTED_TEST((PINUSE(p) || NEXT_CHUNK(PREV_CHUNK(p)) == p), ETHeapBadCellAddress,p,0); |
|
767 } |
|
768 |
|
769 /* Check properties of free chunks */ |
|
770 void RHybridHeap::DoCheckFreeChunk(mstate m, mchunkptr p) |
|
771 { |
|
772 size_t sz = p->iHead & ~(PINUSE_BIT|CINUSE_BIT); |
|
773 mchunkptr next = CHUNK_PLUS_OFFSET(p, sz); |
|
774 DoCheckAnyChunk(m, p); |
|
775 __HEAP_CORRUPTED_TEST((!CINUSE(p)), ETHeapBadCellAddress,p,0); |
|
776 __HEAP_CORRUPTED_TEST((!NEXT_PINUSE(p)), ETHeapBadCellAddress,p,0); |
|
777 if (p != m->iDv && p != m->iTop) |
|
778 { |
|
779 if (sz >= MIN_CHUNK_SIZE) |
|
780 { |
|
781 __HEAP_CORRUPTED_TEST(((sz & CHUNK_ALIGN_MASK) == 0), ETHeapBadCellAddress,p,0); |
|
782 __HEAP_CORRUPTED_TEST((IS_ALIGNED(CHUNK2MEM(p))), ETHeapBadCellAddress,p,0); |
|
783 __HEAP_CORRUPTED_TEST((next->iPrevFoot == sz), ETHeapBadCellAddress,p,0); |
|
784 __HEAP_CORRUPTED_TEST((PINUSE(p)), ETHeapBadCellAddress,p,0); |
|
785 __HEAP_CORRUPTED_TEST( (next == m->iTop || CINUSE(next)), ETHeapBadCellAddress,p,0); |
|
786 __HEAP_CORRUPTED_TEST((p->iFd->iBk == p), ETHeapBadCellAddress,p,0); |
|
787 __HEAP_CORRUPTED_TEST((p->iBk->iFd == p), ETHeapBadCellAddress,p,0); |
|
788 } |
|
789 else /* markers are always of size SIZE_T_SIZE */ |
|
790 __HEAP_CORRUPTED_TEST((sz == SIZE_T_SIZE), ETHeapBadCellAddress,p,0); |
|
791 } |
|
792 } |
|
793 |
|
794 /* Check properties of malloced chunks at the point they are malloced */ |
|
795 void RHybridHeap::DoCheckMallocedChunk(mstate m, void* mem, size_t s) |
|
796 { |
|
797 if (mem != 0) |
|
798 { |
|
799 mchunkptr p = MEM2CHUNK(mem); |
|
800 size_t sz = p->iHead & ~(PINUSE_BIT|CINUSE_BIT); |
|
801 DoCheckInuseChunk(m, p); |
|
802 __HEAP_CORRUPTED_TEST(((sz & CHUNK_ALIGN_MASK) == 0), ETHeapBadCellAddress,p,0); |
|
803 __HEAP_CORRUPTED_TEST((sz >= MIN_CHUNK_SIZE), ETHeapBadCellAddress,p,0); |
|
804 __HEAP_CORRUPTED_TEST((sz >= s), ETHeapBadCellAddress,p,0); |
|
805 /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */ |
|
806 __HEAP_CORRUPTED_TEST((sz < (s + MIN_CHUNK_SIZE)), ETHeapBadCellAddress,p,0); |
|
807 } |
|
808 } |
|
809 |
|
810 /* Check a tree and its subtrees. */ |
|
811 void RHybridHeap::DoCheckTree(mstate m, tchunkptr t) |
|
812 { |
|
813 tchunkptr head = 0; |
|
814 tchunkptr u = t; |
|
815 bindex_t tindex = t->iIndex; |
|
816 size_t tsize = CHUNKSIZE(t); |
|
817 bindex_t idx; |
|
818 DoComputeTreeIndex(tsize, idx); |
|
819 __HEAP_CORRUPTED_TEST((tindex == idx), ETHeapBadCellAddress,u,0); |
|
820 __HEAP_CORRUPTED_TEST((tsize >= MIN_LARGE_SIZE), ETHeapBadCellAddress,u,0); |
|
821 __HEAP_CORRUPTED_TEST((tsize >= MINSIZE_FOR_TREE_INDEX(idx)), ETHeapBadCellAddress,u,0); |
|
822 __HEAP_CORRUPTED_TEST(((idx == NTREEBINS-1) || (tsize < MINSIZE_FOR_TREE_INDEX((idx+1)))), ETHeapBadCellAddress,u,0); |
|
823 |
|
824 do |
|
825 { /* traverse through chain of same-sized nodes */ |
|
826 DoCheckAnyChunk(m, ((mchunkptr)u)); |
|
827 __HEAP_CORRUPTED_TEST((u->iIndex == tindex), ETHeapBadCellAddress,u,0); |
|
828 __HEAP_CORRUPTED_TEST((CHUNKSIZE(u) == tsize), ETHeapBadCellAddress,u,0); |
|
829 __HEAP_CORRUPTED_TEST((!CINUSE(u)), ETHeapBadCellAddress,u,0); |
|
830 __HEAP_CORRUPTED_TEST((!NEXT_PINUSE(u)), ETHeapBadCellAddress,u,0); |
|
831 __HEAP_CORRUPTED_TEST((u->iFd->iBk == u), ETHeapBadCellAddress,u,0); |
|
832 __HEAP_CORRUPTED_TEST((u->iBk->iFd == u), ETHeapBadCellAddress,u,0); |
|
833 if (u->iParent == 0) |
|
834 { |
|
835 __HEAP_CORRUPTED_TEST((u->iChild[0] == 0), ETHeapBadCellAddress,u,0); |
|
836 __HEAP_CORRUPTED_TEST((u->iChild[1] == 0), ETHeapBadCellAddress,u,0); |
|
837 } |
|
838 else |
|
839 { |
|
840 __HEAP_CORRUPTED_TEST((head == 0), ETHeapBadCellAddress,u,0); /* only one node on chain has iParent */ |
|
841 head = u; |
|
842 __HEAP_CORRUPTED_TEST((u->iParent != u), ETHeapBadCellAddress,u,0); |
|
843 __HEAP_CORRUPTED_TEST( (u->iParent->iChild[0] == u || |
|
844 u->iParent->iChild[1] == u || |
|
845 *((tbinptr*)(u->iParent)) == u), ETHeapBadCellAddress,u,0); |
|
846 if (u->iChild[0] != 0) |
|
847 { |
|
848 __HEAP_CORRUPTED_TEST((u->iChild[0]->iParent == u), ETHeapBadCellAddress,u,0); |
|
849 __HEAP_CORRUPTED_TEST((u->iChild[0] != u), ETHeapBadCellAddress,u,0); |
|
850 DoCheckTree(m, u->iChild[0]); |
|
851 } |
|
852 if (u->iChild[1] != 0) |
|
853 { |
|
854 __HEAP_CORRUPTED_TEST((u->iChild[1]->iParent == u), ETHeapBadCellAddress,u,0); |
|
855 __HEAP_CORRUPTED_TEST((u->iChild[1] != u), ETHeapBadCellAddress,u,0); |
|
856 DoCheckTree(m, u->iChild[1]); |
|
857 } |
|
858 if (u->iChild[0] != 0 && u->iChild[1] != 0) |
|
859 { |
|
860 __HEAP_CORRUPTED_TEST((CHUNKSIZE(u->iChild[0]) < CHUNKSIZE(u->iChild[1])), ETHeapBadCellAddress,u,0); |
|
861 } |
|
862 } |
|
863 u = u->iFd; |
|
864 } |
|
865 while (u != t); |
|
866 __HEAP_CORRUPTED_TEST((head != 0), ETHeapBadCellAddress,u,0); |
|
867 } |
|
868 |
|
869 /* Check all the chunks in a treebin. */ |
|
870 void RHybridHeap::DoCheckTreebin(mstate m, bindex_t i) |
|
871 { |
|
872 tbinptr* tb = TREEBIN_AT(m, i); |
|
873 tchunkptr t = *tb; |
|
874 int empty = (m->iTreeMap & (1U << i)) == 0; |
|
875 if (t == 0) |
|
876 __HEAP_CORRUPTED_TEST((empty), ETHeapBadCellAddress,t,0); |
|
877 if (!empty) |
|
878 DoCheckTree(m, t); |
|
879 } |
|
880 |
|
881 /* Check all the chunks in a smallbin. */ |
|
882 void RHybridHeap::DoCheckSmallbin(mstate m, bindex_t i) |
|
883 { |
|
884 sbinptr b = SMALLBIN_AT(m, i); |
|
885 mchunkptr p = b->iBk; |
|
886 unsigned int empty = (m->iSmallMap & (1U << i)) == 0; |
|
887 if (p == b) |
|
888 __HEAP_CORRUPTED_TEST((empty), ETHeapBadCellAddress,p,0); |
|
889 if (!empty) |
|
890 { |
|
891 for (; p != b; p = p->iBk) |
|
892 { |
|
893 size_t size = CHUNKSIZE(p); |
|
894 mchunkptr q; |
|
895 /* each chunk claims to be free */ |
|
896 DoCheckFreeChunk(m, p); |
|
897 /* chunk belongs in bin */ |
|
898 __HEAP_CORRUPTED_TEST((SMALL_INDEX(size) == i), ETHeapBadCellAddress,p,0); |
|
899 __HEAP_CORRUPTED_TEST((p->iBk == b || CHUNKSIZE(p->iBk) == CHUNKSIZE(p)), ETHeapBadCellAddress,p,0); |
|
900 /* chunk is followed by an inuse chunk */ |
|
901 q = NEXT_CHUNK(p); |
|
902 if (q->iHead != FENCEPOST_HEAD) |
|
903 DoCheckInuseChunk(m, q); |
|
904 } |
|
905 } |
|
906 } |
|
907 |
|
908 /* Find x in a bin. Used in other check functions. */ |
|
909 TInt RHybridHeap::BinFind(mstate m, mchunkptr x) |
|
910 { |
|
911 size_t size = CHUNKSIZE(x); |
|
912 if (IS_SMALL(size)) |
|
913 { |
|
914 bindex_t sidx = SMALL_INDEX(size); |
|
915 sbinptr b = SMALLBIN_AT(m, sidx); |
|
916 if (SMALLMAP_IS_MARKED(m, sidx)) |
|
917 { |
|
918 mchunkptr p = b; |
|
919 do |
|
920 { |
|
921 if (p == x) |
|
922 return 1; |
|
923 } |
|
924 while ((p = p->iFd) != b); |
|
925 } |
|
926 } |
|
927 else |
|
928 { |
|
929 bindex_t tidx; |
|
930 DoComputeTreeIndex(size, tidx); |
|
931 if (TREEMAP_IS_MARKED(m, tidx)) |
|
932 { |
|
933 tchunkptr t = *TREEBIN_AT(m, tidx); |
|
934 size_t sizebits = size << LEFTSHIFT_FOR_TREE_INDEX(tidx); |
|
935 while (t != 0 && CHUNKSIZE(t) != size) |
|
936 { |
|
937 t = t->iChild[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; |
|
938 sizebits <<= 1; |
|
939 } |
|
940 if (t != 0) |
|
941 { |
|
942 tchunkptr u = t; |
|
943 do |
|
944 { |
|
945 if (u == (tchunkptr)x) |
|
946 return 1; |
|
947 } |
|
948 while ((u = u->iFd) != t); |
|
949 } |
|
950 } |
|
951 } |
|
952 return 0; |
|
953 } |
|
954 |
|
955 /* Traverse each chunk and check it; return total */ |
|
956 size_t RHybridHeap::TraverseAndCheck(mstate m) |
|
957 { |
|
958 size_t sum = 0; |
|
959 msegmentptr s = &m->iSeg; |
|
960 sum += m->iTopSize + TOP_FOOT_SIZE; |
|
961 mchunkptr q = ALIGN_AS_CHUNK(s->iBase); |
|
962 mchunkptr lastq = 0; |
|
963 __HEAP_CORRUPTED_TEST((PINUSE(q)), ETHeapBadCellAddress,q,0); |
|
964 while (q != m->iTop && q->iHead != FENCEPOST_HEAD) |
|
965 { |
|
966 sum += CHUNKSIZE(q); |
|
967 if (CINUSE(q)) |
|
968 { |
|
969 __HEAP_CORRUPTED_TEST((!BinFind(m, q)), ETHeapBadCellAddress,q,0); |
|
970 DoCheckInuseChunk(m, q); |
|
971 } |
|
972 else |
|
973 { |
|
974 __HEAP_CORRUPTED_TEST((q == m->iDv || BinFind(m, q)), ETHeapBadCellAddress,q,0); |
|
975 __HEAP_CORRUPTED_TEST((lastq == 0 || CINUSE(lastq)), ETHeapBadCellAddress,q,0); /* Not 2 consecutive free */ |
|
976 DoCheckFreeChunk(m, q); |
|
977 } |
|
978 lastq = q; |
|
979 q = NEXT_CHUNK(q); |
|
980 } |
|
981 return sum; |
|
982 } |
|
983 |
|
984 /* Check all properties of malloc_state. */ |
|
985 void RHybridHeap::DoCheckMallocState(mstate m) |
|
986 { |
|
987 bindex_t i; |
|
988 // size_t total; |
|
989 /* check bins */ |
|
990 for (i = 0; i < NSMALLBINS; ++i) |
|
991 DoCheckSmallbin(m, i); |
|
992 for (i = 0; i < NTREEBINS; ++i) |
|
993 DoCheckTreebin(m, i); |
|
994 |
|
995 if (m->iDvSize != 0) |
|
996 { /* check iDv chunk */ |
|
997 DoCheckAnyChunk(m, m->iDv); |
|
998 __HEAP_CORRUPTED_TEST((m->iDvSize == CHUNKSIZE(m->iDv)), ETHeapBadCellAddress,m->iDv,0); |
|
999 __HEAP_CORRUPTED_TEST((m->iDvSize >= MIN_CHUNK_SIZE), ETHeapBadCellAddress,m->iDv,0); |
|
1000 __HEAP_CORRUPTED_TEST((BinFind(m, m->iDv) == 0), ETHeapBadCellAddress,m->iDv,0); |
|
1001 } |
|
1002 |
|
1003 if (m->iTop != 0) |
|
1004 { /* check iTop chunk */ |
|
1005 DoCheckTopChunk(m, m->iTop); |
|
1006 __HEAP_CORRUPTED_TEST((m->iTopSize == CHUNKSIZE(m->iTop)), ETHeapBadCellAddress,m->iTop,0); |
|
1007 __HEAP_CORRUPTED_TEST((m->iTopSize > 0), ETHeapBadCellAddress,m->iTop,0); |
|
1008 __HEAP_CORRUPTED_TEST((BinFind(m, m->iTop) == 0), ETHeapBadCellAddress,m->iTop,0); |
|
1009 } |
|
1010 |
|
1011 // total = |
|
1012 TraverseAndCheck(m); |
|
1013 } |
|
1014 |
|
1015 #ifndef __KERNEL_MODE__ |
|
1016 // |
|
1017 // Methods for Slab allocator detailed check |
|
1018 // |
|
1019 void RHybridHeap::DoCheckSlabTree(slab** aS, TBool aPartialPage) |
|
1020 { |
|
1021 slab* s = *aS; |
|
1022 if (!s) |
|
1023 return; |
|
1024 |
|
1025 TUint size = SlabHeaderSize(s->iHeader); |
|
1026 slab** parent = aS; |
|
1027 slab** child2 = &s->iChild2; |
|
1028 |
|
1029 while ( s ) |
|
1030 { |
|
1031 __HEAP_CORRUPTED_TEST((s->iParent == parent), ETHeapBadCellAddress,s,SLABSIZE); |
|
1032 __HEAP_CORRUPTED_TEST((!s->iChild1 || s < s->iChild1), ETHeapBadCellAddress,s,SLABSIZE); |
|
1033 __HEAP_CORRUPTED_TEST((!s->iChild2 || s < s->iChild2), ETHeapBadCellAddress,s,SLABSIZE); |
|
1034 |
|
1035 if ( aPartialPage ) |
|
1036 { |
|
1037 if ( s->iChild1 ) |
|
1038 size = SlabHeaderSize(s->iChild1->iHeader); |
|
1039 } |
|
1040 else |
|
1041 { |
|
1042 __HEAP_CORRUPTED_TEST((SlabHeaderSize(s->iHeader) == size), ETHeapBadCellAddress,s,SLABSIZE); |
|
1043 } |
|
1044 parent = &s->iChild1; |
|
1045 s = s->iChild1; |
|
1046 |
|
1047 } |
|
1048 |
|
1049 parent = child2; |
|
1050 s = *child2; |
|
1051 |
|
1052 while ( s ) |
|
1053 { |
|
1054 __HEAP_CORRUPTED_TEST((s->iParent == parent), ETHeapBadCellAddress,s,SLABSIZE); |
|
1055 __HEAP_CORRUPTED_TEST((!s->iChild1 || s < s->iChild1), ETHeapBadCellAddress,s,SLABSIZE); |
|
1056 __HEAP_CORRUPTED_TEST((!s->iChild2 || s < s->iChild2), ETHeapBadCellAddress,s,SLABSIZE); |
|
1057 |
|
1058 if ( aPartialPage ) |
|
1059 { |
|
1060 if ( s->iChild2 ) |
|
1061 size = SlabHeaderSize(s->iChild2->iHeader); |
|
1062 } |
|
1063 else |
|
1064 { |
|
1065 __HEAP_CORRUPTED_TEST((SlabHeaderSize(s->iHeader) == size), ETHeapBadCellAddress,s,SLABSIZE); |
|
1066 } |
|
1067 parent = &s->iChild2; |
|
1068 s = s->iChild2; |
|
1069 |
|
1070 } |
|
1071 |
|
1072 } |
|
1073 |
|
1074 void RHybridHeap::DoCheckSlabTrees() |
|
1075 { |
|
1076 for (TInt i = 0; i < (MAXSLABSIZE>>2); ++i) |
|
1077 DoCheckSlabTree(&iSlabAlloc[i].iPartial, EFalse); |
|
1078 DoCheckSlabTree(&iPartialPage, ETrue); |
|
1079 } |
|
1080 |
|
1081 void RHybridHeap::DoCheckSlab(slab* aSlab, TAllocatorType aSlabType, TAny* aBfr) |
|
1082 { |
|
1083 if ( (aSlabType == ESlabSpare) || (aSlabType == EEmptySlab) ) |
|
1084 return; |
|
1085 |
|
1086 unsigned h = aSlab->iHeader; |
|
1087 __HEAP_CORRUPTED_TEST((ZEROBITS(h)), ETHeapBadCellAddress,aBfr,aSlab); |
|
1088 unsigned used = SlabHeaderUsedm4(h)+4; |
|
1089 unsigned size = SlabHeaderSize(h); |
|
1090 __HEAP_CORRUPTED_TEST( (used < SLABSIZE),ETHeapBadCellAddress, aBfr, aSlab); |
|
1091 __HEAP_CORRUPTED_TEST( ((size > 3 ) && (size < MAXSLABSIZE)), ETHeapBadCellAddress,aBfr,aSlab); |
|
1092 unsigned count = 0; |
|
1093 |
|
1094 switch ( aSlabType ) |
|
1095 { |
|
1096 case EFullSlab: |
|
1097 count = (KMaxSlabPayload / size ); |
|
1098 __HEAP_CORRUPTED_TEST((used == count*size), ETHeapBadCellAddress,aBfr,aSlab); |
|
1099 __HEAP_CORRUPTED_TEST((HeaderFloating(h)), ETHeapBadCellAddress,aBfr,aSlab); |
|
1100 break; |
|
1101 |
|
1102 case EPartialFullSlab: |
|
1103 __HEAP_CORRUPTED_TEST(((used % size)==0),ETHeapBadCellAddress,aBfr,aSlab); |
|
1104 __HEAP_CORRUPTED_TEST(((SlabHeaderFree(h) == 0) || (((SlabHeaderFree(h)<<2)-sizeof(slabhdr)) % SlabHeaderSize(h) == 0)), |
|
1105 ETHeapBadCellAddress,aBfr,aSlab); |
|
1106 break; |
|
1107 |
|
1108 default: |
|
1109 break; |
|
1110 |
|
1111 } |
|
1112 } |
|
1113 |
|
1114 // |
|
1115 // Check that committed size in heap equals number of pages in bitmap |
|
1116 // plus size of Doug Lea region |
|
1117 // |
|
1118 void RHybridHeap::DoCheckCommittedSize(TInt aNPages, mstate aM) |
|
1119 { |
|
1120 TInt total_committed = (aNPages * iPageSize) + aM->iSeg.iSize + (iBase - (TUint8*)this); |
|
1121 __HEAP_CORRUPTED_TEST((total_committed == iChunkSize), ETHeapBadCellAddress,total_committed,iChunkSize); |
|
1122 } |
|
1123 |
|
1124 #endif // __KERNEL_MODE__ |