kernel/eka/common/debugfunction.cpp
branchRCL_3
changeset 43 c1f20ce4abcf
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/kernel/eka/common/debugfunction.cpp	Tue Aug 31 16:34:26 2010 +0300
@@ -0,0 +1,1124 @@
+// Copyright (c) 1994-2009 Nokia Corporation and/or its subsidiary(-ies).
+// All rights reserved.
+// This component and the accompanying materials are made available
+// under the terms of the License "Eclipse Public License v1.0"
+// which accompanies this distribution, and is available
+// at the URL "http://www.eclipse.org/legal/epl-v10.html".
+//
+// Initial Contributors:
+// Nokia Corporation - initial contribution.
+//
+// Contributors:
+//
+// Description:
+// kernel\eka\common\debugfunction.cpp
+// 
+//
+
+#include "common.h"
+#ifdef __KERNEL_MODE__
+#include <kernel/kern_priv.h>
+#endif
+#include "dla.h"
+#ifndef __KERNEL_MODE__
+#include "slab.h"
+#include "page_alloc.h"
+#endif
+#include "heap_hybrid.h"
+
+#define GM  (&iGlobalMallocState)
+#define __HEAP_CORRUPTED_TRACE(t,p,l) BTraceContext12(BTrace::EHeap, BTrace::EHeapCorruption, (TUint32)t, (TUint32)p, (TUint32)l);
+#define __HEAP_CORRUPTED_TEST(c,x, p,l) if (!c) { if (iFlags & (EMonitorMemory+ETraceAllocs) )  __HEAP_CORRUPTED_TRACE(this,p,l)  HEAP_PANIC(x); }
+#define __HEAP_CORRUPTED_TEST_STATIC(c,t,x,p,l) if (!c) { if (t && (t->iFlags & (EMonitorMemory+ETraceAllocs) )) __HEAP_CORRUPTED_TRACE(t,p,l) HEAP_PANIC(x); }
+
+TInt RHybridHeap::DebugFunction(TInt aFunc, TAny* a1, TAny* a2)
+{
+    TInt r = KErrNone;
+    switch(aFunc)
+        {
+        
+        case RAllocator::ECount:
+            struct HeapInfo info;
+            Lock();
+            GetInfo(&info, NULL);
+            *(unsigned*)a1 = info.iFreeN;
+            r = info.iAllocN;
+            Unlock();
+            break;
+            
+        case RAllocator::EMarkStart:
+            __DEBUG_ONLY(DoMarkStart());
+            break;
+            
+        case RAllocator::EMarkEnd:
+            __DEBUG_ONLY( r = DoMarkEnd((TInt)a1) );
+            break;
+            
+        case RAllocator::ECheck:
+            r = DoCheckHeap((SCheckInfo*)a1);
+            break;
+            
+        case RAllocator::ESetFail:
+            __DEBUG_ONLY(DoSetAllocFail((TAllocFail)(TInt)a1, (TInt)a2));
+            break;
+
+        case RAllocator::EGetFail:
+            __DEBUG_ONLY(r = iFailType);
+            break;
+
+        case RAllocator::ESetBurstFail:
+#if _DEBUG
+            {
+            SRAllocatorBurstFail* fail = (SRAllocatorBurstFail*) a2;
+            DoSetAllocFail((TAllocFail)(TInt)a1, fail->iRate, fail->iBurst);
+            }
+#endif
+            break;
+            
+        case RAllocator::ECheckFailure:
+            // iRand will be incremented for each EFailNext, EBurstFailNext,
+            // EDeterministic and EBurstDeterministic failure.
+            r = iRand;
+            break;
+            
+        case RAllocator::ECopyDebugInfo:
+            {
+            TInt nestingLevel = ((SDebugCell*)a1)[-1].nestingLevel;
+            ((SDebugCell*)a2)[-1].nestingLevel = nestingLevel;
+            break;
+            }
+
+		case RAllocator::EGetSize:
+			{
+			r = iChunkSize - sizeof(RHybridHeap);
+			break;
+			}
+
+		case RAllocator::EGetMaxLength:
+			{
+			r = iMaxLength;
+			break;
+			}
+
+		case RAllocator::EGetBase:
+			{
+			*(TAny**)a1 = iBase;
+			break;
+			}
+
+		case RAllocator::EAlignInteger:
+			{
+			r = _ALIGN_UP((TInt)a1, iAlign);
+			break;
+			}
+
+		case RAllocator::EAlignAddr:
+			{
+            *(TAny**)a2 = (TAny*)_ALIGN_UP((TLinAddr)a1, iAlign);
+			break;
+			}
+
+        case RHybridHeap::EWalk:
+            struct HeapInfo hinfo;
+            SWalkInfo winfo;
+            Lock();
+            winfo.iFunction = (TWalkFunc)a1;
+            winfo.iParam    = a2;
+			winfo.iHeap     = (RHybridHeap*)this; 	
+            GetInfo(&hinfo, &winfo);
+            Unlock();
+            break;
+
+#ifndef __KERNEL_MODE__
+			
+        case RHybridHeap::EHybridHeap:
+            {
+			if ( !a1 )
+				return KErrGeneral;
+			STestCommand* cmd = (STestCommand*)a1;
+			switch ( cmd->iCommand )
+				{
+				case EGetConfig:
+					cmd->iConfig.iSlabBits = iSlabConfigBits;
+					cmd->iConfig.iDelayedSlabThreshold = iPageThreshold;
+					cmd->iConfig.iPagePower = iPageThreshold;
+					break;
+					
+				case ESetConfig:
+					//
+					// New configuration data for slab and page allocator.
+					// Reset heap to get data into use
+					//
+#if USE_HYBRID_HEAP
+					iSlabConfigBits  = cmd->iConfig.iSlabBits & 0x3fff;
+					iSlabInitThreshold = cmd->iConfig.iDelayedSlabThreshold;
+					iPageThreshold = (cmd->iConfig.iPagePower & 0x1f);
+					Reset();
+#endif
+					break;
+					
+				case EHeapMetaData:
+					cmd->iData = this;
+					break;
+					
+				case ETestData:
+					iTestData = cmd->iData;
+					break;
+
+				default:
+					return KErrNotSupported;
+					
+				}
+
+            break;
+			}
+#endif  // __KERNEL_MODE            
+            
+        default:
+            return KErrNotSupported;
+            
+        }
+    return r;
+}
+
+void RHybridHeap::Walk(SWalkInfo* aInfo, TAny* aBfr, TInt aLth, TCellType aBfrType, TAllocatorType aAllocatorType)
+{
+    //
+    // This function is always called from RHybridHeap::GetInfo.
+    // Actual walk function is called if SWalkInfo pointer is defined
+    // 
+    //
+    if ( aInfo )
+        {
+#ifdef __KERNEL_MODE__
+		(void)aAllocatorType;
+#if defined(_DEBUG)		
+		if ( aBfrType == EGoodAllocatedCell )
+			aInfo->iFunction(aInfo->iParam, aBfrType, ((TUint8*)aBfr+EDebugHdrSize), (aLth-EDebugHdrSize) );
+		else
+			aInfo->iFunction(aInfo->iParam, aBfrType,  aBfr, aLth );
+#else
+		aInfo->iFunction(aInfo->iParam, aBfrType, aBfr, aLth );
+#endif
+		
+#else  // __KERNEL_MODE__
+		
+        if ( aAllocatorType & (EFullSlab + EPartialFullSlab + EEmptySlab + ESlabSpare) )
+			{
+			if ( aInfo->iHeap )
+				{
+				TUint32 dummy;
+				TInt    npages;
+				aInfo->iHeap->DoCheckSlab((slab*)aBfr, aAllocatorType);
+				__HEAP_CORRUPTED_TEST_STATIC(aInfo->iHeap->CheckBitmap(Floor(aBfr, PAGESIZE), PAGESIZE, dummy, npages),
+											 aInfo->iHeap, ETHeapBadCellAddress, aBfr, aLth);
+				}
+			if ( aAllocatorType & EPartialFullSlab )
+				 WalkPartialFullSlab(aInfo, (slab*)aBfr, aBfrType, aLth);	
+            else if ( aAllocatorType & EFullSlab )
+					WalkFullSlab(aInfo, (slab*)aBfr, aBfrType, aLth);
+			}
+#if defined(_DEBUG)     
+        else  if ( aBfrType == EGoodAllocatedCell )
+            aInfo->iFunction(aInfo->iParam, aBfrType, ((TUint8*)aBfr+EDebugHdrSize), (aLth-EDebugHdrSize) );
+        else
+            aInfo->iFunction(aInfo->iParam, aBfrType,  aBfr, aLth );
+#else
+        else
+            aInfo->iFunction(aInfo->iParam, aBfrType, aBfr, aLth );
+#endif
+
+#endif // __KERNEL_MODE	
+        }
+}
+
+#ifndef __KERNEL_MODE__
+void RHybridHeap::WalkPartialFullSlab(SWalkInfo* aInfo, slab* aSlab, TCellType /*aBfrType*/, TInt /*aLth*/)
+{
+	if ( aInfo )
+		{
+		//
+		// Build bitmap of free buffers in the partial full slab
+		//
+		TUint32 bitmap[4];
+		__HEAP_CORRUPTED_TEST_STATIC( (aInfo->iHeap != NULL), aInfo->iHeap, ETHeapBadCellAddress, 0, aSlab);
+		aInfo->iHeap->BuildPartialSlabBitmap(bitmap, aSlab);
+		//
+		// Find used (allocated) buffers from iPartial full slab
+		//
+		TUint32 h = aSlab->iHeader;
+		TUint32 size = SlabHeaderSize(h);
+		TUint32 count = KMaxSlabPayload / size;  // Total buffer count in slab
+		TUint32 i = 0;
+		TUint32 ix = 0;
+		TUint32 bit = 1;				
+
+		while ( i < count )
+			{
+
+			if ( bitmap[ix] & bit )
+				{
+				aInfo->iFunction(aInfo->iParam, EGoodFreeCell, &aSlab->iPayload[i*size], size ); 
+				} 
+			else
+				{
+#if defined(_DEBUG)
+				aInfo->iFunction(aInfo->iParam, EGoodAllocatedCell, (&aSlab->iPayload[i*size]+EDebugHdrSize), (size-EDebugHdrSize) );
+#else				
+				aInfo->iFunction(aInfo->iParam, EGoodAllocatedCell, &aSlab->iPayload[i*size], size );
+#endif
+				}
+			bit <<= 1;
+			if ( bit == 0 )
+				{
+				bit = 1;
+				ix ++;
+				}
+
+			i ++;
+			}
+		}
+
+}
+
+void RHybridHeap::WalkFullSlab(SWalkInfo* aInfo, slab* aSlab, TCellType aBfrType, TInt /*aLth*/)
+{
+	if ( aInfo )
+		{
+		TUint32 h = aSlab->iHeader;
+		TUint32 size = SlabHeaderSize(h);
+		TUint32 count = (SlabHeaderUsedm4(h) + 4) / size;
+		TUint32 i = 0;
+		while ( i < count )
+			{
+#if defined(_DEBUG)
+			if ( aBfrType == EGoodAllocatedCell )
+				aInfo->iFunction(aInfo->iParam, aBfrType, (&aSlab->iPayload[i*size]+EDebugHdrSize), (size-EDebugHdrSize) );
+			else
+				aInfo->iFunction(aInfo->iParam, aBfrType, &aSlab->iPayload[i*size], size );
+#else
+			aInfo->iFunction(aInfo->iParam, aBfrType, &aSlab->iPayload[i*size], size );
+#endif      
+			i ++;
+			}
+		}
+}
+
+void RHybridHeap::BuildPartialSlabBitmap(TUint32* aBitmap, slab* aSlab, TAny* aBfr)
+{
+	//
+	// Build a bitmap of free buffers in a partial full slab
+	//
+	TInt i;
+	TUint32 bit = 0;
+	TUint32 index;  
+	TUint32 h = aSlab->iHeader;
+	TUint32 used = SlabHeaderUsedm4(h)+4;
+	TUint32 size = SlabHeaderSize(h);
+	TInt    count = (KMaxSlabPayload / size);
+	TInt    free_count = count -  (used / size); // Total free buffer count in slab
+	aBitmap[0] = 0, aBitmap[1] = 0,	aBitmap[2] = 0, aBitmap[3] = 0;
+	TUint32 offs = (h & 0xff) << 2;
+
+	//
+	// Process first buffer in partial slab free buffer chain
+	//
+	while ( offs )
+		{
+		unsigned char* p = (unsigned char*)Offset(aSlab, offs); 		
+		__HEAP_CORRUPTED_TEST( (sizeof(slabhdr) <= offs), ETHeapBadCellAddress, p, aSlab);
+		offs -= sizeof(slabhdr);
+		__HEAP_CORRUPTED_TEST( (offs % size == 0), ETHeapBadCellAddress, p, aSlab);
+		index = (offs / size);  // Bit index in bitmap
+		i = 0;
+		while ( i < 4 )
+			{
+			if ( index < 32 )
+				{
+				bit = (1 << index);
+				break;
+				}
+			index -= 32;
+			i ++;
+			}
+
+		__HEAP_CORRUPTED_TEST( ((aBitmap[i] & bit) == 0), ETHeapBadCellAddress, p, aSlab);  // Buffer already in chain
+
+		aBitmap[i] |= bit;
+		free_count --;
+		offs = ((unsigned)*p) << 2; // Next in free chain
+		}
+
+	__HEAP_CORRUPTED_TEST( (free_count >= 0), ETHeapBadCellAddress, aBfr, aSlab);  // free buffer count/size mismatch	
+	//
+	// Process next rest of the free buffers which are in the
+	// wilderness (at end of the slab)
+	//
+	index = count - 1;
+	i = index / 32;
+	index = index % 32;
+	while ( free_count && (i >= 0))
+		{
+		bit = (1 << index);
+		__HEAP_CORRUPTED_TEST( ((aBitmap[i] & bit) == 0), ETHeapBadCellAddress, aBfr, aSlab);  // Buffer already in chain
+		aBitmap[i] |= bit;
+		if ( index )
+			index --;
+		else
+			{
+			index = 31;
+			i --;
+			}
+		free_count --;
+		}
+
+	if ( aBfr )  // Assure that specified buffer does NOT exist in partial slab free buffer chain
+		{
+		offs = LowBits(aBfr, SLABSIZE);
+		__HEAP_CORRUPTED_TEST( (sizeof(slabhdr) <= offs), ETHeapBadCellAddress, aBfr, aSlab);
+		offs -= sizeof(slabhdr);
+		__HEAP_CORRUPTED_TEST( ((offs % size) == 0), ETHeapBadCellAddress, aBfr, aSlab);
+		index = (offs / size);  // Bit index in bitmap
+		i = 0;
+		while ( i < 4 )
+			{
+			if ( index < 32 )
+				{
+				bit = (1 << index);
+				break;
+				}
+			index -= 32;
+			i ++;
+			}
+		__HEAP_CORRUPTED_TEST( ((aBitmap[i] & bit) == 0), ETHeapBadCellAddress, aBfr, aSlab);  // Buffer already in chain
+		}
+}
+
+#endif	// __KERNEL_MODE__
+
+void RHybridHeap::WalkCheckCell(TAny* aPtr, TCellType aType, TAny* aCell, TInt aLen)
+{
+    (void)aCell;
+    SHeapCellInfo& info = *(SHeapCellInfo*)aPtr;
+    switch(aType)
+        {
+        case EGoodAllocatedCell:
+            {
+            ++info.iTotalAlloc;
+            info.iTotalAllocSize += aLen; 
+#if defined(_DEBUG)
+            RHybridHeap& h = *info.iHeap;
+            SDebugCell* DbgCell = (SDebugCell*)((TUint8*)aCell-EDebugHdrSize);
+            if ( DbgCell->nestingLevel == h.iNestingLevel )
+                {
+                if (++info.iLevelAlloc==1)
+                    info.iStranded = DbgCell;
+#ifdef __KERNEL_MODE__
+                if (KDebugNum(KSERVER) || KDebugNum(KTESTFAST))
+                    {
+                    Kern::Printf("LEAKED KERNEL HEAP CELL @ %08x : len=%d", aCell, aLen);
+                    TLinAddr base = ((TLinAddr)aCell)&~0x0f;
+                    TLinAddr end = ((TLinAddr)aCell)+(TLinAddr)aLen;
+                    while(base<end)
+                        {
+                        const TUint32* p = (const TUint32*)base;
+                        Kern::Printf("%08x: %08x %08x %08x %08x", p, p[0], p[1], p[2], p[3]);
+                        base += 16;
+                        }
+                    }
+#endif
+                }
+#endif  
+            break;
+            }
+        case EGoodFreeCell:
+            ++info.iTotalFree;
+            break;
+        case EBadAllocatedCellSize:
+            HEAP_PANIC(ETHeapBadAllocatedCellSize);
+        case EBadAllocatedCellAddress:
+            HEAP_PANIC(ETHeapBadAllocatedCellAddress);
+        case EBadFreeCellAddress:
+            HEAP_PANIC(ETHeapBadFreeCellAddress);
+        case EBadFreeCellSize:
+            HEAP_PANIC(ETHeapBadFreeCellSize);
+        default:
+            HEAP_PANIC(ETHeapWalkBadCellType);
+        }
+}
+
+
+TInt RHybridHeap::DoCheckHeap(SCheckInfo* aInfo)
+{
+    (void)aInfo;
+    SHeapCellInfo info;
+    memclr(&info, sizeof(info));
+    info.iHeap = this;
+    struct HeapInfo hinfo;
+    SWalkInfo winfo;
+    Lock();
+	DoCheckMallocState(GM);  // Check DL heap internal structure
+#ifndef __KERNEL_MODE__
+	TUint32 dummy;
+	TInt    npages;
+	__HEAP_CORRUPTED_TEST(CheckBitmap(NULL, 0, dummy, npages), ETHeapBadCellAddress, this, 0);  // Check page allocator buffers
+	DoCheckSlabTrees();	
+	DoCheckCommittedSize(npages, GM);
+#endif				   
+    winfo.iFunction = WalkCheckCell;
+    winfo.iParam    = &info;
+	winfo.iHeap     = (RHybridHeap*)this; 		
+    GetInfo(&hinfo, &winfo);
+    Unlock();
+    
+#if defined(_DEBUG)
+    if (!aInfo)
+        return KErrNone;
+    TInt expected = aInfo->iCount;
+    TInt actual = aInfo->iAll ? info.iTotalAlloc : info.iLevelAlloc;
+    if (actual!=expected && !iTestData)
+        {
+#ifdef __KERNEL_MODE__
+        Kern::Fault("KERN-ALLOC COUNT", (expected<<16)|actual );
+#else
+        User::Panic(_L("ALLOC COUNT"), (expected<<16)|actual );
+#endif
+        }
+#endif
+    return KErrNone;
+}
+
+#ifdef _DEBUG
+void RHybridHeap::DoMarkStart()
+{
+    if (iNestingLevel==0)
+        iAllocCount=0;
+    iNestingLevel++;
+}
+
+TUint32 RHybridHeap::DoMarkEnd(TInt aExpected)
+{
+    if (iNestingLevel==0)
+        return 0;
+    SHeapCellInfo info;
+    SHeapCellInfo* p = iTestData ? (SHeapCellInfo*)iTestData : &info;
+    memclr(p, sizeof(info));
+    p->iHeap = this;
+    struct HeapInfo hinfo;
+    SWalkInfo winfo;
+    Lock();
+    winfo.iFunction = WalkCheckCell;
+    winfo.iParam    = p;
+	winfo.iHeap     = (RHybridHeap*)this; 	
+    GetInfo(&hinfo, &winfo);
+    Unlock();
+    
+    if (p->iLevelAlloc != aExpected && !iTestData)
+        return (TUint32)(p->iStranded + 1);
+    if (--iNestingLevel == 0)
+        iAllocCount = 0;
+    return 0;
+}
+
+void RHybridHeap::DoSetAllocFail(TAllocFail aType, TInt aRate)
+{// Default to a burst mode of 1, as aType may be a burst type.
+    DoSetAllocFail(aType, aRate, 1);
+}
+
+void ResetAllocCellLevels(TAny* aPtr, RHybridHeap::TCellType aType, TAny* aCell, TInt aLen)
+{
+    (void)aPtr;
+    (void)aLen;
+    
+    if (aType == RHybridHeap::EGoodAllocatedCell)
+        {
+        RHybridHeap::SDebugCell* DbgCell = (RHybridHeap::SDebugCell*)((TUint8*)aCell-RHeap::EDebugHdrSize);
+        DbgCell->nestingLevel = 0;
+        }
+}
+
+// Don't change as the ETHeapBadDebugFailParameter check below and the API 
+// documentation rely on this being 16 for RHybridHeap.
+LOCAL_D const TInt KBurstFailRateShift = 16;
+LOCAL_D const TInt KBurstFailRateMask = (1 << KBurstFailRateShift) - 1;
+
+void RHybridHeap::DoSetAllocFail(TAllocFail aType, TInt aRate, TUint aBurst)
+{
+    if (aType==EReset)
+        {
+        // reset levels of all allocated cells to 0
+        // this should prevent subsequent tests failing unnecessarily
+        iFailed = EFalse;       // Reset for ECheckFailure relies on this.
+        struct HeapInfo hinfo;
+        SWalkInfo winfo;
+        Lock();
+        winfo.iFunction = (TWalkFunc)&ResetAllocCellLevels;
+        winfo.iParam    = NULL;
+		winfo.iHeap     = (RHybridHeap*)this; 	
+        GetInfo(&hinfo, &winfo);
+        Unlock();
+        // reset heap allocation mark as well
+        iNestingLevel=0;
+        iAllocCount=0;
+        aType=ENone;
+        }
+    
+    switch (aType)
+        {
+        case EBurstRandom:
+        case EBurstTrueRandom:
+        case EBurstDeterministic:
+        case EBurstFailNext:
+            // If the fail type is a burst type then iFailRate is split in 2:
+            // the 16 lsbs are the fail rate and the 16 msbs are the burst length.
+            if (TUint(aRate) > (TUint)KMaxTUint16 || aBurst > KMaxTUint16)
+                HEAP_PANIC(ETHeapBadDebugFailParameter);
+            
+            iFailed = EFalse;
+            iFailType = aType;
+            iFailRate = (aRate == 0) ? 1 : aRate;
+            iFailAllocCount = -iFailRate;
+            iFailRate = iFailRate | (aBurst << KBurstFailRateShift);
+            break;
+            
+        default:
+            iFailed = EFalse;
+            iFailType = aType;
+            iFailRate = (aRate == 0) ? 1 : aRate; // A rate of <1 is meaningless
+            iFailAllocCount = 0;
+            break;
+        }
+    
+    // Set up iRand for either:
+    //      - random seed value, or
+    //      - a count of the number of failures so far.
+    iRand = 0;
+#ifndef __KERNEL_MODE__
+    switch (iFailType)
+        {
+        case ETrueRandom:
+        case EBurstTrueRandom:
+            {
+            TTime time;
+            time.HomeTime();
+            TInt64 seed = time.Int64();
+            iRand = Math::Rand(seed);
+            break;
+            }
+        case ERandom:
+        case EBurstRandom:
+            {
+            TInt64 seed = 12345;
+            iRand = Math::Rand(seed);
+            break;
+            }
+        default:
+            break;
+        }
+#endif
+}
+
+TBool RHybridHeap::CheckForSimulatedAllocFail()
+//
+// Check to see if the user has requested simulated alloc failure, and if so possibly 
+// Return ETrue indicating a failure.
+//
+{
+    // For burst mode failures iFailRate is shared
+    TUint16 rate  = (TUint16)(iFailRate &  KBurstFailRateMask);
+    TUint16 burst = (TUint16)(iFailRate >> KBurstFailRateShift);
+    TBool r = EFalse;
+    switch (iFailType)
+        {
+#ifndef __KERNEL_MODE__
+        case ERandom:
+        case ETrueRandom:
+            if (++iFailAllocCount>=iFailRate) 
+                {   
+                iFailAllocCount=0;
+                if (!iFailed) // haven't failed yet after iFailRate allocations so fail now
+                    return(ETrue); 
+                iFailed=EFalse;
+                }
+            else   
+                {
+                if (!iFailed)
+                    {
+                    TInt64 seed=iRand;
+                    iRand=Math::Rand(seed);
+                    if (iRand%iFailRate==0)
+                        {
+                        iFailed=ETrue;
+                        return(ETrue);
+                        }
+                    }
+                }
+            break;
+            
+        case EBurstRandom:
+        case EBurstTrueRandom:
+            if (++iFailAllocCount < 0) 
+                {
+                // We haven't started failing yet so should we now?
+                TInt64 seed = iRand;
+                iRand = Math::Rand(seed);
+                if (iRand % rate == 0)
+                    {// Fail now.  Reset iFailAllocCount so we fail burst times
+                    iFailAllocCount = 0;
+                    r = ETrue;
+                    }
+                }
+            else
+                {
+                if (iFailAllocCount < burst)
+                    {// Keep failing for burst times
+                    r = ETrue;
+                    }
+                else
+                    {// We've now failed burst times so start again.
+                    iFailAllocCount = -(rate - 1);
+                    }
+                }
+            break;
+#endif
+        case EDeterministic:
+            if (++iFailAllocCount%iFailRate==0)
+                {
+                r=ETrue;
+                iRand++;    // Keep count of how many times we have failed
+                }
+            break;
+            
+        case EBurstDeterministic:
+            // This will fail burst number of times, every rate attempts.
+            if (++iFailAllocCount >= 0)
+                {
+                if (iFailAllocCount == burst - 1)
+                    {// This is the burst time we have failed so make it the last by
+                    // reseting counts so we next fail after rate attempts.
+                    iFailAllocCount = -rate;
+                    }
+                r = ETrue;
+                iRand++;    // Keep count of how many times we have failed
+                }
+            break;
+            
+        case EFailNext:
+            if ((++iFailAllocCount%iFailRate)==0)
+                {
+                iFailType=ENone;
+                r=ETrue;
+                iRand++;    // Keep count of how many times we have failed
+                }
+            break;
+            
+        case EBurstFailNext:
+            if (++iFailAllocCount >= 0)
+                {
+                if (iFailAllocCount == burst - 1)
+                    {// This is the burst time we have failed so make it the last.
+                    iFailType = ENone;
+                    }
+                r = ETrue;
+                iRand++;    // Keep count of how many times we have failed
+                }
+            break;
+            
+        default:
+            break;
+        }
+    return r;
+}
+
+#endif  // DEBUG
+
+//
+//  Methods for Doug Lea allocator detailed check
+//
+
+void RHybridHeap::DoCheckAnyChunk(mstate m, mchunkptr p)
+{
+    __HEAP_CORRUPTED_TEST(((IS_ALIGNED(CHUNK2MEM(p))) || (p->iHead == FENCEPOST_HEAD)), ETHeapBadCellAddress, p, 0);
+	(void)m;
+}
+
+/* Check properties of iTop chunk */
+void RHybridHeap::DoCheckTopChunk(mstate m, mchunkptr p)
+{
+    msegmentptr sp = &m->iSeg;
+    size_t  sz = CHUNKSIZE(p);
+    __HEAP_CORRUPTED_TEST((sp != 0), ETHeapBadCellAddress, p, 0);
+    __HEAP_CORRUPTED_TEST(((IS_ALIGNED(CHUNK2MEM(p))) || (p->iHead == FENCEPOST_HEAD)), ETHeapBadCellAddress, p,0);
+    __HEAP_CORRUPTED_TEST((sz == m->iTopSize), ETHeapBadCellAddress,p,0);
+    __HEAP_CORRUPTED_TEST((sz > 0), ETHeapBadCellAddress,p,0);
+    __HEAP_CORRUPTED_TEST((sz == ((sp->iBase + sp->iSize) - (TUint8*)p) - TOP_FOOT_SIZE), ETHeapBadCellAddress,p,0);
+    __HEAP_CORRUPTED_TEST((PINUSE(p)), ETHeapBadCellAddress,p,0);
+    __HEAP_CORRUPTED_TEST((!NEXT_PINUSE(p)), ETHeapBadCellAddress,p,0);
+}
+
+/* Check properties of inuse chunks */
+void RHybridHeap::DoCheckInuseChunk(mstate m, mchunkptr p)
+{
+    DoCheckAnyChunk(m, p);
+    __HEAP_CORRUPTED_TEST((CINUSE(p)), ETHeapBadCellAddress,p,0);
+    __HEAP_CORRUPTED_TEST((NEXT_PINUSE(p)), ETHeapBadCellAddress,p,0);
+    /* If not PINUSE and not mmapped, previous chunk has OK offset */
+    __HEAP_CORRUPTED_TEST((PINUSE(p) || NEXT_CHUNK(PREV_CHUNK(p)) == p), ETHeapBadCellAddress,p,0);
+}
+
+/* Check properties of free chunks */
+void RHybridHeap::DoCheckFreeChunk(mstate m, mchunkptr p)
+{
+    size_t sz = p->iHead & ~(PINUSE_BIT|CINUSE_BIT);
+    mchunkptr next = CHUNK_PLUS_OFFSET(p, sz);
+    DoCheckAnyChunk(m, p);
+    __HEAP_CORRUPTED_TEST((!CINUSE(p)), ETHeapBadCellAddress,p,0);
+    __HEAP_CORRUPTED_TEST((!NEXT_PINUSE(p)), ETHeapBadCellAddress,p,0);
+    if (p != m->iDv && p != m->iTop)
+        {
+        if (sz >= MIN_CHUNK_SIZE)
+            {
+            __HEAP_CORRUPTED_TEST(((sz & CHUNK_ALIGN_MASK) == 0), ETHeapBadCellAddress,p,0);
+            __HEAP_CORRUPTED_TEST((IS_ALIGNED(CHUNK2MEM(p))), ETHeapBadCellAddress,p,0);
+            __HEAP_CORRUPTED_TEST((next->iPrevFoot == sz), ETHeapBadCellAddress,p,0);
+            __HEAP_CORRUPTED_TEST((PINUSE(p)), ETHeapBadCellAddress,p,0);
+            __HEAP_CORRUPTED_TEST( (next == m->iTop || CINUSE(next)), ETHeapBadCellAddress,p,0);
+            __HEAP_CORRUPTED_TEST((p->iFd->iBk == p), ETHeapBadCellAddress,p,0);
+            __HEAP_CORRUPTED_TEST((p->iBk->iFd == p), ETHeapBadCellAddress,p,0);
+            }
+        else    /* markers are always of size SIZE_T_SIZE */
+            __HEAP_CORRUPTED_TEST((sz == SIZE_T_SIZE), ETHeapBadCellAddress,p,0);
+        }
+}
+
+/* Check properties of malloced chunks at the point they are malloced */
+void RHybridHeap::DoCheckMallocedChunk(mstate m, void* mem, size_t s)
+{
+    if (mem != 0)
+        {
+        mchunkptr p = MEM2CHUNK(mem);
+        size_t sz = p->iHead & ~(PINUSE_BIT|CINUSE_BIT);
+        DoCheckInuseChunk(m, p);
+        __HEAP_CORRUPTED_TEST(((sz & CHUNK_ALIGN_MASK) == 0), ETHeapBadCellAddress,p,0);
+        __HEAP_CORRUPTED_TEST((sz >= MIN_CHUNK_SIZE), ETHeapBadCellAddress,p,0);
+        __HEAP_CORRUPTED_TEST((sz >= s), ETHeapBadCellAddress,p,0);
+        /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
+        __HEAP_CORRUPTED_TEST((sz < (s + MIN_CHUNK_SIZE)), ETHeapBadCellAddress,p,0);
+        }
+}
+
+/* Check a tree and its subtrees.   */
+void RHybridHeap::DoCheckTree(mstate m, tchunkptr t)
+{
+    tchunkptr head = 0;
+    tchunkptr u = t;
+    bindex_t tindex = t->iIndex;
+    size_t tsize = CHUNKSIZE(t);
+    bindex_t idx;
+    DoComputeTreeIndex(tsize, idx);
+    __HEAP_CORRUPTED_TEST((tindex == idx), ETHeapBadCellAddress,u,0);
+    __HEAP_CORRUPTED_TEST((tsize >= MIN_LARGE_SIZE), ETHeapBadCellAddress,u,0);
+    __HEAP_CORRUPTED_TEST((tsize >= MINSIZE_FOR_TREE_INDEX(idx)), ETHeapBadCellAddress,u,0);
+    __HEAP_CORRUPTED_TEST(((idx == NTREEBINS-1) || (tsize < MINSIZE_FOR_TREE_INDEX((idx+1)))), ETHeapBadCellAddress,u,0);
+    
+    do
+        { /* traverse through chain of same-sized nodes */
+        DoCheckAnyChunk(m, ((mchunkptr)u));
+        __HEAP_CORRUPTED_TEST((u->iIndex == tindex), ETHeapBadCellAddress,u,0);
+        __HEAP_CORRUPTED_TEST((CHUNKSIZE(u) == tsize), ETHeapBadCellAddress,u,0);
+        __HEAP_CORRUPTED_TEST((!CINUSE(u)), ETHeapBadCellAddress,u,0);
+        __HEAP_CORRUPTED_TEST((!NEXT_PINUSE(u)), ETHeapBadCellAddress,u,0);
+        __HEAP_CORRUPTED_TEST((u->iFd->iBk == u), ETHeapBadCellAddress,u,0);
+        __HEAP_CORRUPTED_TEST((u->iBk->iFd == u), ETHeapBadCellAddress,u,0);
+        if (u->iParent == 0)
+            {
+            __HEAP_CORRUPTED_TEST((u->iChild[0] == 0), ETHeapBadCellAddress,u,0);
+            __HEAP_CORRUPTED_TEST((u->iChild[1] == 0), ETHeapBadCellAddress,u,0);
+            }
+        else
+            {
+            __HEAP_CORRUPTED_TEST((head == 0), ETHeapBadCellAddress,u,0); /* only one node on chain has iParent */
+            head = u;
+            __HEAP_CORRUPTED_TEST((u->iParent != u), ETHeapBadCellAddress,u,0);
+            __HEAP_CORRUPTED_TEST( (u->iParent->iChild[0] == u ||
+                    u->iParent->iChild[1] == u ||
+                    *((tbinptr*)(u->iParent)) == u), ETHeapBadCellAddress,u,0);
+            if (u->iChild[0] != 0)
+                {
+                __HEAP_CORRUPTED_TEST((u->iChild[0]->iParent == u), ETHeapBadCellAddress,u,0);
+                __HEAP_CORRUPTED_TEST((u->iChild[0] != u), ETHeapBadCellAddress,u,0);
+                DoCheckTree(m, u->iChild[0]);
+                }
+            if (u->iChild[1] != 0)
+                {
+                __HEAP_CORRUPTED_TEST((u->iChild[1]->iParent == u), ETHeapBadCellAddress,u,0);
+                __HEAP_CORRUPTED_TEST((u->iChild[1] != u), ETHeapBadCellAddress,u,0);
+                DoCheckTree(m, u->iChild[1]);
+                }
+            if (u->iChild[0] != 0 && u->iChild[1] != 0)
+                {
+                __HEAP_CORRUPTED_TEST((CHUNKSIZE(u->iChild[0]) < CHUNKSIZE(u->iChild[1])), ETHeapBadCellAddress,u,0);
+                }
+            }
+        u = u->iFd;
+        }
+    while (u != t);
+    __HEAP_CORRUPTED_TEST((head != 0), ETHeapBadCellAddress,u,0);
+}
+
+/*  Check all the chunks in a treebin.  */
+void RHybridHeap::DoCheckTreebin(mstate m, bindex_t i)
+{
+    tbinptr* tb = TREEBIN_AT(m, i);
+    tchunkptr t = *tb;
+    int empty = (m->iTreeMap & (1U << i)) == 0;
+    if (t == 0)
+        __HEAP_CORRUPTED_TEST((empty), ETHeapBadCellAddress,t,0);
+    if (!empty)
+        DoCheckTree(m, t);
+}
+
+/*  Check all the chunks in a smallbin. */
+void RHybridHeap::DoCheckSmallbin(mstate m, bindex_t i)
+{
+    sbinptr b = SMALLBIN_AT(m, i);
+    mchunkptr p = b->iBk;
+    unsigned int empty = (m->iSmallMap & (1U << i)) == 0;
+    if (p == b)
+        __HEAP_CORRUPTED_TEST((empty), ETHeapBadCellAddress,p,0);
+    if (!empty)
+        {
+        for (; p != b; p = p->iBk)
+            {
+            size_t size = CHUNKSIZE(p);
+            mchunkptr q;
+            /* each chunk claims to be free */
+            DoCheckFreeChunk(m, p);
+            /* chunk belongs in bin */
+            __HEAP_CORRUPTED_TEST((SMALL_INDEX(size) == i), ETHeapBadCellAddress,p,0);
+            __HEAP_CORRUPTED_TEST((p->iBk == b || CHUNKSIZE(p->iBk) == CHUNKSIZE(p)), ETHeapBadCellAddress,p,0);
+            /* chunk is followed by an inuse chunk */
+            q = NEXT_CHUNK(p);
+            if (q->iHead != FENCEPOST_HEAD)
+                DoCheckInuseChunk(m, q);
+            }
+        }
+}
+
+/* Find x in a bin. Used in other check functions. */
+TInt RHybridHeap::BinFind(mstate m, mchunkptr x)
+{
+    size_t size = CHUNKSIZE(x);
+    if (IS_SMALL(size))
+        {
+        bindex_t sidx = SMALL_INDEX(size);
+        sbinptr b = SMALLBIN_AT(m, sidx);
+        if (SMALLMAP_IS_MARKED(m, sidx))
+            {
+            mchunkptr p = b;
+            do
+                {
+                if (p == x)
+                    return 1;
+                }
+            while ((p = p->iFd) != b);
+            }
+        }
+    else
+        {
+        bindex_t tidx;
+        DoComputeTreeIndex(size, tidx);
+        if (TREEMAP_IS_MARKED(m, tidx))
+            {
+            tchunkptr t = *TREEBIN_AT(m, tidx);
+            size_t sizebits = size << LEFTSHIFT_FOR_TREE_INDEX(tidx);
+            while (t != 0 && CHUNKSIZE(t) != size)
+                {
+                t = t->iChild[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
+                sizebits <<= 1;
+                }
+            if (t != 0)
+                {
+                tchunkptr u = t;
+                do
+                    {
+                    if (u == (tchunkptr)x)
+                        return 1;
+                    }
+                while ((u = u->iFd) != t);
+                }
+            }
+        }
+    return 0;
+}
+
+/* Traverse each chunk and check it; return total */
+size_t RHybridHeap::TraverseAndCheck(mstate m)
+{
+    size_t sum = 0;
+    msegmentptr s = &m->iSeg;
+    sum += m->iTopSize + TOP_FOOT_SIZE;
+    mchunkptr q = ALIGN_AS_CHUNK(s->iBase);
+    mchunkptr lastq = 0;
+    __HEAP_CORRUPTED_TEST((PINUSE(q)), ETHeapBadCellAddress,q,0);
+    while (q != m->iTop && q->iHead != FENCEPOST_HEAD)
+        {
+        sum += CHUNKSIZE(q);
+        if (CINUSE(q))
+            {
+            __HEAP_CORRUPTED_TEST((!BinFind(m, q)), ETHeapBadCellAddress,q,0);
+            DoCheckInuseChunk(m, q);
+            }
+        else
+            {
+            __HEAP_CORRUPTED_TEST((q == m->iDv || BinFind(m, q)), ETHeapBadCellAddress,q,0);
+            __HEAP_CORRUPTED_TEST((lastq == 0 || CINUSE(lastq)), ETHeapBadCellAddress,q,0); /* Not 2 consecutive free */
+            DoCheckFreeChunk(m, q);
+            }
+        lastq = q;
+        q = NEXT_CHUNK(q);
+        }
+    return sum;
+}
+
+/* Check all properties of malloc_state. */
+void RHybridHeap::DoCheckMallocState(mstate m)
+{
+    bindex_t i;
+//    size_t total;
+    /* check bins */
+    for (i = 0; i < NSMALLBINS; ++i)
+        DoCheckSmallbin(m, i);
+    for (i = 0; i < NTREEBINS; ++i)
+        DoCheckTreebin(m, i);
+    
+    if (m->iDvSize != 0)
+        { /* check iDv chunk */
+        DoCheckAnyChunk(m, m->iDv);
+        __HEAP_CORRUPTED_TEST((m->iDvSize == CHUNKSIZE(m->iDv)), ETHeapBadCellAddress,m->iDv,0);
+        __HEAP_CORRUPTED_TEST((m->iDvSize >= MIN_CHUNK_SIZE), ETHeapBadCellAddress,m->iDv,0);
+        __HEAP_CORRUPTED_TEST((BinFind(m, m->iDv) == 0), ETHeapBadCellAddress,m->iDv,0);
+        }
+    
+    if (m->iTop != 0)
+        {    /* check iTop chunk */
+        DoCheckTopChunk(m, m->iTop);
+        __HEAP_CORRUPTED_TEST((m->iTopSize == CHUNKSIZE(m->iTop)), ETHeapBadCellAddress,m->iTop,0);
+        __HEAP_CORRUPTED_TEST((m->iTopSize > 0), ETHeapBadCellAddress,m->iTop,0);
+        __HEAP_CORRUPTED_TEST((BinFind(m, m->iTop) == 0), ETHeapBadCellAddress,m->iTop,0);
+        }
+    
+//    total =
+    TraverseAndCheck(m);
+}
+
+#ifndef __KERNEL_MODE__
+//
+//  Methods for Slab allocator detailed check
+//
+void RHybridHeap::DoCheckSlabTree(slab** aS, TBool aPartialPage)
+{
+	slab* s = *aS;
+	if (!s)
+		return;
+
+	TUint size = SlabHeaderSize(s->iHeader);
+	slab** parent = aS;
+	slab** child2 = &s->iChild2;
+
+	while ( s )
+		{
+		__HEAP_CORRUPTED_TEST((s->iParent == parent), ETHeapBadCellAddress,s,SLABSIZE);
+		__HEAP_CORRUPTED_TEST((!s->iChild1 || s < s->iChild1), ETHeapBadCellAddress,s,SLABSIZE);
+		__HEAP_CORRUPTED_TEST((!s->iChild2 || s < s->iChild2), ETHeapBadCellAddress,s,SLABSIZE);
+
+		if ( aPartialPage )
+			{
+			if ( s->iChild1 )
+				size = SlabHeaderSize(s->iChild1->iHeader);
+			}
+		else
+			{
+			__HEAP_CORRUPTED_TEST((SlabHeaderSize(s->iHeader) == size), ETHeapBadCellAddress,s,SLABSIZE);
+			}
+		parent = &s->iChild1;
+		s = s->iChild1;
+
+		}
+
+	parent = child2;
+	s = *child2;
+
+	while ( s )
+		{
+		__HEAP_CORRUPTED_TEST((s->iParent == parent), ETHeapBadCellAddress,s,SLABSIZE);
+		__HEAP_CORRUPTED_TEST((!s->iChild1 || s < s->iChild1), ETHeapBadCellAddress,s,SLABSIZE);
+		__HEAP_CORRUPTED_TEST((!s->iChild2 || s < s->iChild2), ETHeapBadCellAddress,s,SLABSIZE);
+
+		if ( aPartialPage )
+			{
+			if ( s->iChild2 )
+				size = SlabHeaderSize(s->iChild2->iHeader);
+			}
+		else
+			{
+			__HEAP_CORRUPTED_TEST((SlabHeaderSize(s->iHeader) == size), ETHeapBadCellAddress,s,SLABSIZE);
+			}
+		parent = &s->iChild2;
+		s = s->iChild2;
+
+		}
+
+}
+
+void RHybridHeap::DoCheckSlabTrees()
+{
+	for (TInt i = 0; i < (MAXSLABSIZE>>2); ++i)
+		DoCheckSlabTree(&iSlabAlloc[i].iPartial, EFalse);
+	DoCheckSlabTree(&iPartialPage, ETrue);
+}
+
+void RHybridHeap::DoCheckSlab(slab* aSlab, TAllocatorType aSlabType, TAny* aBfr)
+{
+   if ( (aSlabType == ESlabSpare) || (aSlabType == EEmptySlab) )
+	  return;
+   
+   unsigned h = aSlab->iHeader;
+   __HEAP_CORRUPTED_TEST((ZEROBITS(h)), ETHeapBadCellAddress,aBfr,aSlab);   
+   unsigned used = SlabHeaderUsedm4(h)+4;
+   unsigned size = SlabHeaderSize(h);
+   __HEAP_CORRUPTED_TEST( (used < SLABSIZE),ETHeapBadCellAddress, aBfr, aSlab);
+   __HEAP_CORRUPTED_TEST( ((size > 3 ) && (size < MAXSLABSIZE)), ETHeapBadCellAddress,aBfr,aSlab);         
+	unsigned count = 0;
+
+	switch ( aSlabType )
+		{
+		case EFullSlab:
+			count = (KMaxSlabPayload / size );			
+  			__HEAP_CORRUPTED_TEST((used == count*size), ETHeapBadCellAddress,aBfr,aSlab);	
+			__HEAP_CORRUPTED_TEST((HeaderFloating(h)), ETHeapBadCellAddress,aBfr,aSlab);
+			break;
+
+		case EPartialFullSlab:
+			__HEAP_CORRUPTED_TEST(((used % size)==0),ETHeapBadCellAddress,aBfr,aSlab);
+			__HEAP_CORRUPTED_TEST(((SlabHeaderFree(h) == 0) || (((SlabHeaderFree(h)<<2)-sizeof(slabhdr)) % SlabHeaderSize(h) == 0)),
+								  ETHeapBadCellAddress,aBfr,aSlab);
+			break;
+
+		default:
+            break;
+			
+		}
+}
+
+//
+//  Check that committed size in heap equals number of pages in bitmap
+//  plus size of Doug Lea region
+//
+void RHybridHeap::DoCheckCommittedSize(TInt aNPages, mstate aM)
+{
+	TInt total_committed = (aNPages * iPageSize) + aM->iSeg.iSize + (iBase - (TUint8*)this);
+	__HEAP_CORRUPTED_TEST((total_committed == iChunkSize), ETHeapBadCellAddress,total_committed,iChunkSize);	
+}
+
+#endif  // __KERNEL_MODE__