|
1 // Copyright (c) 2009-2009 Nokia Corporation and/or its subsidiary(-ies). |
|
2 // All rights reserved. |
|
3 // This component and the accompanying materials are made available |
|
4 // under the terms of the License "Eclipse Public License v1.0" |
|
5 // which accompanies this distribution, and is available |
|
6 // at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
7 // |
|
8 // Initial Contributors: |
|
9 // Nokia Corporation - initial contribution. |
|
10 // |
|
11 // Contributors: |
|
12 // |
|
13 // Description: |
|
14 // e32test\misc\t_loadsim.cpp |
|
15 // |
|
16 // |
|
17 |
|
18 |
|
19 //------------------------------------------------------------------------------------------- |
|
20 //! @SYMTestCaseID KBASE-t_loadsim-2705 |
|
21 //! @SYMTestCaseDesc verifying the behaviour of the load balancer |
|
22 //! @SYMPREQ 417-52765/417-58889 |
|
23 //! @SYMTestPriority Critical |
|
24 //! @SYMTestActions |
|
25 //! 1. This test runs a variety of loads on an SMP system. Loads types are: |
|
26 //! 1.1 Cpu intensive loads |
|
27 //! 1.2 memory intensive loads (high locality) |
|
28 //! 1.3 memory intensive loads (low locality) |
|
29 //! 1.4 memory intensive loads with atomic operations |
|
30 //! 1.5 cpu intensive loads with some serialization |
|
31 //! 2. For each test, the load is first run on a single cpu locked thread as a baseline |
|
32 //! benchmark. Then the tests are run in the following configurations: |
|
33 //! 2.1 For n = 1 to 2*Number of cpus do a run with i threads. |
|
34 //! 2.2 For h = 1 to NumCpus ; For n = h to 2*NumCpus; run with h high priorty threads and |
|
35 //! n standard priority threads, with high priority threads cpu locked. |
|
36 //! 2.3 For h = 1 to NumCpus ; For n = h to 2*NumCpus; run with h high priorty threads and |
|
37 //! n standard priority threads. |
|
38 //! @SYMTestExpectedResults |
|
39 //! test passed. TTest is manual: |
|
40 //! 1. For each test we expect to see that the amount of CPU time obtained by each CPU is |
|
41 //! balanced. That is, all standard priority threads get roughly same amount of CPU time |
|
42 //! and all high priority threads get roughly same amount of CPU time and a higher value |
|
43 //! than lower priority threads. |
|
44 //! 2. We also expect the relative efficiency reported by the test between the benchmark |
|
45 //! and each test run to be >=95% on average. Values well below this are acceptable in |
|
46 //! test runs involving atomic operations (1.4) |
|
47 |
|
48 //------------------------------------------------------------------------------------------- |
|
49 |
|
50 #define __E32TEST_EXTENSION__ |
|
51 #include <e32test.h> |
|
52 #include <e32base.h> |
|
53 #include <hal.h> |
|
54 #include <e32atomics.h> |
|
55 #include <u32hal.h> |
|
56 #include <e32svr.h> |
|
57 |
|
58 //#define TRACE(x) x |
|
59 #define TRACE(x) |
|
60 |
|
61 void Panic(TInt aLine) |
|
62 { |
|
63 User::Panic(_L("T_LOADSIM"),aLine); |
|
64 } |
|
65 |
|
66 #define assert(x) ((void)((x)||(Panic(__LINE__),0))) |
|
67 |
|
68 RTest test(_L("T_LOADSIM")); |
|
69 |
|
70 const TInt KErrCouldNotStart = -99; |
|
71 |
|
72 volatile TInt STFU = 1; |
|
73 |
|
74 /****************************************************************************** |
|
75 * Random Number Generation |
|
76 ******************************************************************************/ |
|
77 void LFSR(TUint64& a) |
|
78 { |
|
79 TInt i; |
|
80 for (i=64; i>0; --i) |
|
81 { |
|
82 TUint64 x = a<<1; |
|
83 TUint64 y = x<<1; |
|
84 x^=y; |
|
85 a = (y>>1) | (x>>63); |
|
86 } |
|
87 } |
|
88 |
|
89 // Returns 256*log2(a/2^64) |
|
90 TInt Log2(TUint64 a) |
|
91 { |
|
92 const TUint64 KBit63 = UI64LIT(0x8000000000000000); |
|
93 TInt n = __e32_find_ms1_64(a); |
|
94 a <<= (63-n); |
|
95 n -= 64; |
|
96 TInt i; |
|
97 for (i=0; i<8; ++i) |
|
98 { |
|
99 a >>= 32; |
|
100 a *= a; |
|
101 n <<= 1; |
|
102 if (a & KBit63) |
|
103 { |
|
104 ++n; |
|
105 } |
|
106 else |
|
107 { |
|
108 a <<= 1; |
|
109 } |
|
110 } |
|
111 return n; |
|
112 } |
|
113 |
|
114 TUint32 ExpRV(TUint64 aU, TUint32 aMean, TUint32 aTick) |
|
115 { |
|
116 TInt n = -Log2(aU); |
|
117 TUint64 x = TUint64(n) * TUint64(aMean); |
|
118 x *= TUint64(22713); // 2^15 * ln2 |
|
119 TUint64 p(aTick); |
|
120 p <<= 22; |
|
121 x += p; |
|
122 p += p; |
|
123 x /= p; |
|
124 return I64LOW(x); |
|
125 } |
|
126 |
|
127 |
|
128 |
|
129 /****************************************************************************** |
|
130 * Generic High-Resolution Timing |
|
131 ******************************************************************************/ |
|
132 class TTimestamp |
|
133 { |
|
134 public: |
|
135 typedef void (*TSampleFunc)(TAny*); |
|
136 public: |
|
137 void Sample(); |
|
138 void Sample(TSampleFunc aFunc, TAny* aPtr); |
|
139 TInt64 operator-(const TTimestamp&) const; |
|
140 static void Init(); |
|
141 private: |
|
142 TUint32 iF; // User::FastCounter() value |
|
143 TUint32 iN; // User::NTickCount() value |
|
144 private: |
|
145 static TUint32 FF; // User::FastCounter() frequency |
|
146 static TUint32 NP; // User::NTickCount() period |
|
147 static TBool FU; // User::FastCounter() counts up |
|
148 static TUint32 FWrapM; // Number of nanokernel ticks for FastCounter() to wrap / 2 * 2^FWrapS |
|
149 static TInt FWrapS; // Shift so that 2^31<=FWrapM<2^32 |
|
150 }; |
|
151 |
|
152 TUint32 TTimestamp::FF; |
|
153 TUint32 TTimestamp::NP; |
|
154 TBool TTimestamp::FU; |
|
155 TUint32 TTimestamp::FWrapM; |
|
156 TInt TTimestamp::FWrapS; |
|
157 |
|
158 |
|
159 void TTimestamp::Sample() |
|
160 { |
|
161 TUint32 n = User::NTickCount(); |
|
162 do { |
|
163 iN = n; |
|
164 iF = User::FastCounter(); |
|
165 n = User::NTickCount(); |
|
166 } while (n!=iN); |
|
167 } |
|
168 |
|
169 void TTimestamp::Sample(TSampleFunc aFunc, TAny* aPtr) |
|
170 { |
|
171 TUint32 n = User::NTickCount(); |
|
172 do { |
|
173 iN = n; |
|
174 (*aFunc)(aPtr); |
|
175 iF = User::FastCounter(); |
|
176 n = User::NTickCount(); |
|
177 } while (n!=iN); |
|
178 } |
|
179 |
|
180 // return (x*a)/b |
|
181 TUint64 scale(TUint64 x, TUint32 a, TUint32 b) |
|
182 { |
|
183 TUint64 mask = KMaxTUint32; |
|
184 TUint64 x0 = x & mask; |
|
185 TUint64 x1 = x >> 32; |
|
186 x0 *= TUint64(a); |
|
187 x1 *= TUint64(a); |
|
188 x1 += (x0 >> 32); |
|
189 x0 &= mask; |
|
190 TUint64 q1 = x1 / TUint64(b); |
|
191 TUint64 q0 = x1 - q1*TUint64(b); |
|
192 q0 <<= 32; |
|
193 q0 |= x0; |
|
194 q0 /= TUint64(b); |
|
195 return (q1<<32)|q0; |
|
196 } |
|
197 |
|
198 |
|
199 // Return difference between a and this in microseconds |
|
200 TInt64 TTimestamp::operator-(const TTimestamp& a) const |
|
201 { |
|
202 TInt sign = 1; |
|
203 TTimestamp start; |
|
204 TTimestamp end; |
|
205 if (iN-a.iN >= 0x80000000u) |
|
206 { |
|
207 sign = -1; |
|
208 start = *this; |
|
209 end = a; |
|
210 } |
|
211 else |
|
212 { |
|
213 start = a; |
|
214 end = *this; |
|
215 } |
|
216 TUint32 fd32 = end.iF - start.iF; |
|
217 if (!FU) |
|
218 fd32 = ~fd32 + 1u; |
|
219 TUint64 nd = TUint64(end.iN) - TUint64(start.iN); |
|
220 nd <<= 31; // 2^31 * difference in NTickCount |
|
221 TUint64 x = TUint64(fd32) * TUint64(FWrapM); |
|
222 x >>= FWrapS; // ftick difference * (FWrapM/2^FWrapS) = 2^31 * ntick difference |
|
223 nd -= x; // Should now be a multiple of 2^31N where N=2^32*ftickp/ntickp |
|
224 // i.e. should be a multiple of 2^63*ftickp/ntickp |
|
225 |
|
226 // FWrapM = 2^(31+FWrapS)*ftickp/ntickp |
|
227 // FWrapM << (32-FWrapS) = 2^63*ftickp/ntickp |
|
228 TUint64 m = TUint64(FWrapM) << (32-FWrapS); |
|
229 |
|
230 nd += (m>>1); |
|
231 nd /= m; |
|
232 |
|
233 nd = (nd<<32) + TUint64(fd32); // final result in fast counter ticks |
|
234 TInt64 r = scale(nd, 1000000, FF); // convert to microseconds |
|
235 if (sign<0) |
|
236 r = -r; |
|
237 return r; |
|
238 } |
|
239 |
|
240 void TTimestamp::Init() |
|
241 { |
|
242 TInt r; |
|
243 r = HAL::Get(HAL::ENanoTickPeriod, (TInt&)NP); |
|
244 assert(r==KErrNone); |
|
245 r = HAL::Get(HAL::EFastCounterFrequency, (TInt&)FF); |
|
246 assert(r==KErrNone); |
|
247 r = HAL::Get(HAL::EFastCounterCountsUp, (TInt&)FU); |
|
248 assert(r==KErrNone); |
|
249 TReal fpn = TReal(FF) * TReal(NP) / 1000000.0; // fast counter ticks per NTick |
|
250 TReal fwrap = 2147483648.0 / fpn; // NTicks between fast counter wraparounds / 2 |
|
251 TInt exp = 0; |
|
252 while (fwrap < 2147483648.0) |
|
253 { |
|
254 fwrap *= 2.0; |
|
255 ++exp; |
|
256 } |
|
257 fwrap += 0.5; |
|
258 if (fwrap >= 4294967296.0) |
|
259 { |
|
260 fwrap *= 0.5; |
|
261 --exp; |
|
262 } |
|
263 FWrapM = (TUint32)fwrap; |
|
264 FWrapS = exp; // NTicks for 2^31 fast ticks = FWrapM/2^FWrapS |
|
265 |
|
266 test.Printf(_L("FastCounter frequency %uHz\n"), FF); |
|
267 if (FU) |
|
268 test.Printf(_L("FastCounter counts UP\n")); |
|
269 else |
|
270 test.Printf(_L("FastCounter counts DOWN\n")); |
|
271 test.Printf(_L("Nanokernel tick period %uus\n"), NP); |
|
272 test.Printf(_L("FWrapM %08x\n"), FWrapM); |
|
273 test.Printf(_L("FWrapS %d\n"), FWrapS); |
|
274 } |
|
275 |
|
276 /****************************************************************************** |
|
277 * CPU Usage Measurement |
|
278 ******************************************************************************/ |
|
279 class TThreadCpuUsageSample |
|
280 { |
|
281 public: |
|
282 void Sample(RThread aThread); |
|
283 TInt64 ElapsedTimeDelta(const TThreadCpuUsageSample& aStart) const; |
|
284 TInt64 CpuTimeDelta(const TThreadCpuUsageSample& aStart) const; |
|
285 private: |
|
286 static void SampleThreadCpuTime(TAny* aPtr); |
|
287 private: |
|
288 TTimestamp iElapsedTime; |
|
289 TInt64 iCpuTime; |
|
290 RThread iThread; |
|
291 }; |
|
292 |
|
293 void TThreadCpuUsageSample::Sample(RThread aThread) |
|
294 { |
|
295 iThread = aThread; |
|
296 iElapsedTime.Sample(&SampleThreadCpuTime, this); |
|
297 } |
|
298 |
|
299 void TThreadCpuUsageSample::SampleThreadCpuTime(TAny* aPtr) |
|
300 { |
|
301 TThreadCpuUsageSample& me = *(TThreadCpuUsageSample*)aPtr; |
|
302 TTimeIntervalMicroSeconds& rt = *(TTimeIntervalMicroSeconds*)&me.iCpuTime; |
|
303 assert(me.iThread.GetCpuTime(rt) == KErrNone); |
|
304 } |
|
305 |
|
306 TInt64 TThreadCpuUsageSample::ElapsedTimeDelta(const TThreadCpuUsageSample& aStart) const |
|
307 { |
|
308 return iElapsedTime - aStart.iElapsedTime; |
|
309 } |
|
310 |
|
311 TInt64 TThreadCpuUsageSample::CpuTimeDelta(const TThreadCpuUsageSample& aStart) const |
|
312 { |
|
313 return iCpuTime - aStart.iCpuTime; |
|
314 } |
|
315 |
|
316 class TCpuUsage |
|
317 { |
|
318 public: |
|
319 enum {EMaxCpus=8}; |
|
320 public: |
|
321 void Sample(); |
|
322 TInt64 ElapsedTimeDelta(const TCpuUsage& aStart) const; |
|
323 TInt64 CpuTimeDelta(const TCpuUsage& aStart, TInt aCpu) const; |
|
324 static TInt N() { return NumberOfCpus; } |
|
325 public: |
|
326 static void Init(); |
|
327 private: |
|
328 static void SampleIdleTimes(TAny* aPtr); |
|
329 private: |
|
330 TTimestamp iElapsedTime; |
|
331 TInt64 iIdleTime[EMaxCpus]; |
|
332 private: |
|
333 static TInt NumberOfCpus; |
|
334 static RThread IdleThread[EMaxCpus]; |
|
335 }; |
|
336 |
|
337 TInt TCpuUsage::NumberOfCpus = -1; |
|
338 RThread TCpuUsage::IdleThread[TCpuUsage::EMaxCpus]; |
|
339 |
|
340 void TCpuUsage::Init() |
|
341 { |
|
342 TTimestamp::Init(); |
|
343 |
|
344 NumberOfCpus = UserSvr::HalFunction(EHalGroupKernel, EKernelHalNumLogicalCpus, 0, 0); |
|
345 test.Printf(_L("NumberOfCpus = %d\n"), NumberOfCpus); |
|
346 assert(NumberOfCpus > 0); |
|
347 assert(NumberOfCpus <= EMaxCpus); |
|
348 |
|
349 TTimeIntervalMicroSeconds ms; |
|
350 TInt r; |
|
351 r = RThread().GetCpuTime(ms); |
|
352 if (r != KErrNone) |
|
353 { |
|
354 test.Printf(_L("RThread::GetCpuTime() returned %d\n"), r); |
|
355 test.Printf(_L("This test requires a working RThread::GetCpuTime() to run\n")); |
|
356 test(0); |
|
357 } |
|
358 |
|
359 TFullName kname; |
|
360 _LIT(KLitKernelName, "ekern.exe*"); |
|
361 _LIT(KLitNull, "::Null"); |
|
362 TFindProcess fp(KLitKernelName); |
|
363 test_KErrNone(fp.Next(kname)); |
|
364 test.Printf(_L("Found kernel process: %S\n"), &kname); |
|
365 kname.Append(KLitNull); |
|
366 TInt i; |
|
367 for (i=0; i<NumberOfCpus; ++i) |
|
368 { |
|
369 TFullName tname(kname); |
|
370 TFullName tname2; |
|
371 if (i>0) |
|
372 tname.AppendNum(i); |
|
373 TFindThread ft(tname); |
|
374 test_KErrNone(ft.Next(tname2)); |
|
375 TInt r = IdleThread[i].Open(ft); |
|
376 test_KErrNone(r); |
|
377 IdleThread[i].FullName(tname2); |
|
378 test.Printf(_L("Found and opened %S\n"), &tname2); |
|
379 } |
|
380 } |
|
381 |
|
382 void TCpuUsage::Sample() |
|
383 { |
|
384 iElapsedTime.Sample(&SampleIdleTimes, this); |
|
385 } |
|
386 |
|
387 void TCpuUsage::SampleIdleTimes(TAny* aPtr) |
|
388 { |
|
389 TCpuUsage& me = *(TCpuUsage*)aPtr; |
|
390 assert(NumberOfCpus > 0); |
|
391 TInt i; |
|
392 for (i=0; i<NumberOfCpus; ++i) |
|
393 assert(IdleThread[i].GetCpuTime((TTimeIntervalMicroSeconds&)me.iIdleTime[i]) == KErrNone); |
|
394 } |
|
395 |
|
396 TInt64 TCpuUsage::ElapsedTimeDelta(const TCpuUsage& aStart) const |
|
397 { |
|
398 return iElapsedTime - aStart.iElapsedTime; |
|
399 } |
|
400 |
|
401 TInt64 TCpuUsage::CpuTimeDelta(const TCpuUsage& aStart, TInt aCpu) const |
|
402 { |
|
403 assert(TUint(aCpu) < TUint(EMaxCpus)); |
|
404 if (aCpu >= NumberOfCpus) |
|
405 return 0; |
|
406 TInt64 idle_time = iIdleTime[aCpu] - aStart.iIdleTime[aCpu]; |
|
407 TInt64 elapsed_time = iElapsedTime - aStart.iElapsedTime; |
|
408 return elapsed_time - idle_time; |
|
409 } |
|
410 |
|
411 |
|
412 |
|
413 /****************************************************************************** |
|
414 * Generic CPU Consumer |
|
415 ******************************************************************************/ |
|
416 enum TCpuEaterType |
|
417 { |
|
418 EEaterStd =0, // do CPU-intensive work with few memory references |
|
419 EEaterMemoryLocalS =1, // do loads of memory references with reasonable locality, shared |
|
420 EEaterMemoryNonLocalS =2, // do loads of memory references with poor locality, shared |
|
421 EEaterMemoryLocalU =3, // do loads of memory references with reasonable locality, unshared |
|
422 EEaterMemoryNonLocalU =4, // do loads of memory references with poor locality, unshared |
|
423 EEaterMemoryAtomic =5, // do loads of atomic memory references |
|
424 EEaterMemoryAtomic2 =6, // do loads of atomic memory references |
|
425 EEaterAmdahl =7, // do CPU-intensive work interspersed with serialized sections |
|
426 }; |
|
427 |
|
428 class CDefaultCpuEater; |
|
429 |
|
430 class REaterArray; |
|
431 class MCpuEater |
|
432 { |
|
433 public: |
|
434 MCpuEater(); |
|
435 virtual ~MCpuEater(); |
|
436 virtual void Eat(TInt aTime, TUint32* aWorkDone)=0; |
|
437 virtual void Calibrate(); |
|
438 inline TBool IsCalibrated() { return iCalibration!=0; } |
|
439 protected: |
|
440 TUint32 WorkValue(TInt aTime); |
|
441 TUint32 iCalibration; // work value for 2^16 microseconds |
|
442 TUint16 iInstance; |
|
443 TUint16 iType; |
|
444 |
|
445 friend class REaterArray; |
|
446 }; |
|
447 |
|
448 MCpuEater::MCpuEater() |
|
449 { |
|
450 iCalibration = 0; // uncalibrated |
|
451 iInstance = KMaxTUint16; // dummy value |
|
452 iType = KMaxTUint16; // dummy value |
|
453 } |
|
454 |
|
455 MCpuEater::~MCpuEater() |
|
456 { |
|
457 } |
|
458 |
|
459 // Calibration is for 2^KLog2CalibrateTime microseconds |
|
460 const TInt KLog2CalibrateTime = 13; |
|
461 |
|
462 TUint32 MCpuEater::WorkValue(TInt aTime) |
|
463 { |
|
464 if (iCalibration == 0) |
|
465 return aTime; |
|
466 TUint64 x = TUint64(aTime) * TUint64(iCalibration); |
|
467 x >>= (KLog2CalibrateTime + 2); // Factor of 4 margin for slowdowns |
|
468 TUint32 r = I64LOW(x); |
|
469 if (I64HIGH(x)) |
|
470 r = KMaxTUint32; |
|
471 if (r == 0) |
|
472 return 1; |
|
473 if (r > iCalibration) |
|
474 return iCalibration; |
|
475 return r; |
|
476 } |
|
477 |
|
478 void MCpuEater::Calibrate() |
|
479 { |
|
480 iCalibration = 0; |
|
481 TUint32 work = 1; |
|
482 TUint64 used = 1; |
|
483 TUint64 threshold = 1; |
|
484 threshold <<= KLog2CalibrateTime; |
|
485 while (work) |
|
486 { |
|
487 TThreadCpuUsageSample initial; |
|
488 TThreadCpuUsageSample final; |
|
489 initial.Sample(RThread()); |
|
490 Eat(work, 0); |
|
491 final.Sample(RThread()); |
|
492 used = final.CpuTimeDelta(initial); |
|
493 if (used >= threshold) |
|
494 break; |
|
495 work <<= 1; |
|
496 } |
|
497 assert(work > 0); |
|
498 TUint64 c(work); |
|
499 c <<= KLog2CalibrateTime; |
|
500 c /= used; |
|
501 if (I64HIGH(c)) |
|
502 iCalibration = KMaxTUint32; |
|
503 else if (I64LOW(c)) |
|
504 iCalibration = I64LOW(c); |
|
505 else |
|
506 iCalibration = 1; |
|
507 test.Printf(_L("MCpuEater::Calibrate() %u\n"), iCalibration); |
|
508 } |
|
509 |
|
510 |
|
511 class REaterArray : public RPointerArray<MCpuEater> |
|
512 { |
|
513 public: |
|
514 REaterArray(); |
|
515 void Close(); |
|
516 MCpuEater* Find(TInt aType, TInt aInstance); |
|
517 MCpuEater* FindOrCreateL(TInt aType, TInt aInstance); |
|
518 private: |
|
519 MCpuEater* CreateLC(TInt aType); |
|
520 private: |
|
521 class MDummy : public MCpuEater |
|
522 { |
|
523 public: |
|
524 MDummy(TInt aType, TInt aInstance) |
|
525 { iType=TUint16(aType); iInstance=TUint16(aInstance); } |
|
526 virtual ~MDummy() |
|
527 {} |
|
528 virtual void Eat(TInt, TUint32*) |
|
529 {} |
|
530 }; |
|
531 private: |
|
532 static TBool Identity(const MCpuEater& aL, const MCpuEater& aR); |
|
533 static TInt Ordering(const MCpuEater& aL, const MCpuEater& aR); |
|
534 }; |
|
535 |
|
536 REaterArray::REaterArray() |
|
537 : RPointerArray<MCpuEater>(8, 2*256) |
|
538 { |
|
539 } |
|
540 |
|
541 void REaterArray::Close() |
|
542 { |
|
543 ResetAndDestroy(); |
|
544 } |
|
545 |
|
546 TBool REaterArray::Identity(const MCpuEater& aL, const MCpuEater& aR) |
|
547 { |
|
548 return (aL.iType==aR.iType && aL.iInstance==aR.iInstance); |
|
549 } |
|
550 |
|
551 TInt REaterArray::Ordering(const MCpuEater& aL, const MCpuEater& aR) |
|
552 { |
|
553 if (aL.iType > aR.iType) |
|
554 return 1; |
|
555 if (aL.iType < aR.iType) |
|
556 return -1; |
|
557 if (aL.iInstance > aR.iInstance) |
|
558 return 1; |
|
559 if (aL.iInstance < aR.iInstance) |
|
560 return -1; |
|
561 return 0; |
|
562 } |
|
563 |
|
564 MCpuEater* REaterArray::Find(TInt aType, TInt aInstance) |
|
565 { |
|
566 MDummy search(aType, aInstance); |
|
567 TInt ix = FindInOrder(&search, &Ordering); |
|
568 if (ix < 0) |
|
569 return 0; |
|
570 return (*this)[ix]; |
|
571 } |
|
572 |
|
573 MCpuEater* REaterArray::FindOrCreateL(TInt aType, TInt aInstance) |
|
574 { |
|
575 MCpuEater* p = Find(aType, aInstance); |
|
576 if (p) |
|
577 return p; |
|
578 p = CreateLC(aType); |
|
579 p->iType = TUint16(aType); |
|
580 p->iInstance = TUint16(aInstance); |
|
581 InsertInOrderL(p, &Ordering); |
|
582 CleanupStack::Pop(); |
|
583 return p; |
|
584 } |
|
585 |
|
586 /****************************************************************************** |
|
587 * Generic zero-drift timed events |
|
588 ******************************************************************************/ |
|
589 class CLoadSim; |
|
590 class MEvent |
|
591 { |
|
592 public: |
|
593 MEvent(CLoadSim*, TInt); |
|
594 virtual void Start()=0; |
|
595 virtual ~MEvent(); |
|
596 inline TBool Queued() const |
|
597 { return iQueued; } |
|
598 protected: |
|
599 void QueueAt(TUint32 aTime); |
|
600 void QueueAfter(TUint32 aInterval); |
|
601 void Dequeue(); |
|
602 virtual TInt Event(); |
|
603 inline TUint64 Random(); |
|
604 protected: |
|
605 TUint8 iId; |
|
606 TUint8 iQueued; |
|
607 TUint8 iE1; |
|
608 TUint8 iE2; |
|
609 MEvent* iChain; |
|
610 CLoadSim* iT; |
|
611 TUint32 iNextEventTime; |
|
612 friend class CLoadSim; |
|
613 }; |
|
614 |
|
615 class CLoadSim : public CActive |
|
616 { |
|
617 public: |
|
618 static CLoadSim* NewL(); |
|
619 ~CLoadSim(); |
|
620 inline TInt TimerPeriod() const |
|
621 { return iTimerPeriod; } |
|
622 TUint64 Random(); |
|
623 private: |
|
624 CLoadSim(); |
|
625 virtual void RunL(); |
|
626 virtual void DoCancel(); |
|
627 void StartTimer(); |
|
628 private: |
|
629 RTimer iTimer; |
|
630 TUint64 iSeed; |
|
631 MEvent* iNextEvent; |
|
632 TUint32 iIterations; |
|
633 TUint32 iLastTrigger; // Last trigger time in ticks |
|
634 TInt iCarry; |
|
635 TInt iTimerPeriod; // Timer tick period in microseconds |
|
636 TInt iMaxDelta; |
|
637 TUint8 iInRunL; |
|
638 TUint8 iTimerRunning; |
|
639 TUint8 iTimerInit; |
|
640 TUint8 iOffsetInit; |
|
641 TUint32 iOffset; |
|
642 private: |
|
643 friend class MEvent; |
|
644 }; |
|
645 |
|
646 inline TUint64 MEvent::Random() |
|
647 { return iT->Random(); } |
|
648 |
|
649 CLoadSim::CLoadSim() |
|
650 : CActive(EPriorityStandard) |
|
651 { |
|
652 iSeed = 0xadf85458; |
|
653 assert(HAL::Get(HAL::ENanoTickPeriod, iTimerPeriod)==KErrNone); |
|
654 iMaxDelta = KMaxTInt / (2*iTimerPeriod); |
|
655 } |
|
656 |
|
657 CLoadSim::~CLoadSim() |
|
658 { |
|
659 Cancel(); |
|
660 iTimer.Close(); |
|
661 } |
|
662 |
|
663 CLoadSim* CLoadSim::NewL() |
|
664 { |
|
665 CLoadSim* p = new (ELeave) CLoadSim(); |
|
666 CleanupStack::PushL(p); |
|
667 User::LeaveIfError(p->iTimer.CreateLocal()); |
|
668 CleanupStack::Pop(); |
|
669 return p; |
|
670 } |
|
671 |
|
672 void CLoadSim::DoCancel() |
|
673 { |
|
674 iTimer.Cancel(); |
|
675 iTimerRunning = 0; |
|
676 } |
|
677 |
|
678 void CLoadSim::RunL() |
|
679 { |
|
680 TRACE(RDebug::Printf("!%d\n", iStatus.Int())); |
|
681 iTimerRunning = 0; |
|
682 iInRunL = 1; |
|
683 TUint32 now = iLastTrigger; |
|
684 if (iStatus == KErrNone) |
|
685 { |
|
686 now += iCarry; |
|
687 iLastTrigger = now; |
|
688 } |
|
689 else if (iStatus == KErrArgument) |
|
690 { |
|
691 now += iCarry; |
|
692 } |
|
693 else if (iStatus == KErrCancel) |
|
694 { |
|
695 iLastTrigger += iCarry; // trigger time was still updated |
|
696 } |
|
697 iCarry = 0; |
|
698 MEvent* e = 0; |
|
699 FOREVER |
|
700 { |
|
701 ++iIterations; |
|
702 e = iNextEvent; |
|
703 if (!e || e->iNextEventTime>now) |
|
704 break; |
|
705 iNextEvent = e->iChain; |
|
706 e->iChain = 0; |
|
707 e->iQueued = 0; |
|
708 e->Event(); |
|
709 } |
|
710 if (e) |
|
711 { |
|
712 TInt delta = TInt(e->iNextEventTime - iLastTrigger); |
|
713 if (delta > iMaxDelta) |
|
714 delta = iMaxDelta; |
|
715 if (delta < -iMaxDelta) |
|
716 delta = -iMaxDelta; |
|
717 iCarry = delta; |
|
718 TInt us = delta * iTimerPeriod; |
|
719 TRACE(RDebug::Printf("T+%d\n", us)); |
|
720 iTimer.AgainHighRes(iStatus, us); |
|
721 SetActive(); |
|
722 iTimerRunning = 1; |
|
723 } |
|
724 iInRunL = 0; |
|
725 } |
|
726 |
|
727 void CLoadSim::StartTimer() |
|
728 { |
|
729 if (iInRunL) |
|
730 return; |
|
731 if (iTimerRunning) |
|
732 { |
|
733 TRACE(RDebug::Printf("TC\n")); |
|
734 iTimer.Cancel(); // will cause RunL with KErrCancel which will restart timer |
|
735 return; |
|
736 } |
|
737 TInt delta = TInt(iNextEvent->iNextEventTime - iLastTrigger); |
|
738 if (delta > iMaxDelta) |
|
739 delta = iMaxDelta; |
|
740 if (delta < -iMaxDelta) |
|
741 delta = -iMaxDelta; |
|
742 iCarry = delta; |
|
743 TInt us = delta * iTimerPeriod; |
|
744 if (iTimerInit) |
|
745 { |
|
746 TRACE(RDebug::Printf("sT+%d\n", us)); |
|
747 iTimer.AgainHighRes(iStatus, us); |
|
748 } |
|
749 else |
|
750 { |
|
751 if (!iOffsetInit) |
|
752 iOffsetInit=1, iOffset=User::NTickCount(); |
|
753 TRACE(RDebug::Printf("sT++%d\n", us)); |
|
754 iTimer.HighRes(iStatus, us); |
|
755 iTimerInit = 1; |
|
756 } |
|
757 SetActive(); |
|
758 iTimerRunning = 1; |
|
759 } |
|
760 |
|
761 TUint64 CLoadSim::Random() |
|
762 { |
|
763 LFSR(iSeed); |
|
764 TUint32 h = I64HIGH(iSeed); |
|
765 TUint32 l = I64LOW(iSeed); |
|
766 h *= 0x9e3779b9u; |
|
767 l *= 0x9e3779b9u; |
|
768 return MAKE_TUINT64(l,h); |
|
769 } |
|
770 |
|
771 MEvent::MEvent(CLoadSim* aT, TInt aId) |
|
772 { |
|
773 iId = (TUint8)aId; |
|
774 iQueued = 0; |
|
775 iE1 = 0; |
|
776 iE2 = 0; |
|
777 iChain = 0; |
|
778 iT = aT; |
|
779 iNextEventTime = 0; |
|
780 } |
|
781 |
|
782 MEvent::~MEvent() |
|
783 { |
|
784 if (iT) |
|
785 Dequeue(); |
|
786 } |
|
787 |
|
788 void MEvent::QueueAt(TUint32 aTime) |
|
789 { |
|
790 TRACE(RDebug::Printf("Q%d@%u\n", iId, aTime)); |
|
791 if (iQueued) |
|
792 Dequeue(); |
|
793 MEvent** p = &iT->iNextEvent; |
|
794 MEvent* e = iT->iNextEvent; |
|
795 for (; e && e->iNextEventTime <= aTime; p=&e->iChain, e=e->iChain) |
|
796 {} |
|
797 iChain = e; |
|
798 *p = this; |
|
799 iNextEventTime = aTime; |
|
800 iQueued = 1; |
|
801 if (iT->iNextEvent==this && !iT->iInRunL) |
|
802 iT->StartTimer(); |
|
803 } |
|
804 |
|
805 void MEvent::QueueAfter(TUint32 aInterval) |
|
806 { |
|
807 TRACE(RDebug::Printf("Q%d+%u\n", iId, aInterval)); |
|
808 TUint32 now = User::NTickCount(); |
|
809 if (!iT->iTimerInit) |
|
810 iT->iOffset=now, iT->iOffsetInit=1; |
|
811 QueueAt(now-iT->iOffset+aInterval); |
|
812 } |
|
813 |
|
814 void MEvent::Dequeue() |
|
815 { |
|
816 TRACE(RDebug::Printf("DQ%d\n", iId)); |
|
817 if (!iQueued) |
|
818 return; |
|
819 MEvent* e = iT->iNextEvent; |
|
820 for (; e && e->iChain!=this; e=e->iChain) |
|
821 {} |
|
822 if (e) |
|
823 { |
|
824 e->iChain = iChain; |
|
825 } |
|
826 iChain = 0; |
|
827 iQueued = 0; |
|
828 } |
|
829 |
|
830 TInt MEvent::Event() |
|
831 { |
|
832 TRACE(RDebug::Printf("*%d\n", iId)); |
|
833 return iId; |
|
834 } |
|
835 |
|
836 |
|
837 |
|
838 /****************************************************************************** |
|
839 * Poisson process simulation |
|
840 ******************************************************************************/ |
|
841 class MDiscretePoisson : public MEvent |
|
842 { |
|
843 public: |
|
844 MDiscretePoisson(CLoadSim* aT, TInt aId, TUint32 aMicroseconds); |
|
845 ~MDiscretePoisson(); |
|
846 virtual void Start(); |
|
847 virtual TInt Event(); |
|
848 virtual void PoissonEvent(); |
|
849 public: |
|
850 TUint32 iUs; |
|
851 TBool iContinue; |
|
852 }; |
|
853 |
|
854 MDiscretePoisson::MDiscretePoisson(CLoadSim* aT, TInt aId, TUint32 aMicroseconds) |
|
855 : MEvent(aT, aId) |
|
856 { |
|
857 iUs = aMicroseconds; |
|
858 iContinue = EFalse; |
|
859 } |
|
860 |
|
861 MDiscretePoisson::~MDiscretePoisson() |
|
862 { |
|
863 } |
|
864 |
|
865 void MDiscretePoisson::Start() |
|
866 { |
|
867 iContinue = ETrue; |
|
868 TUint32 gap = ExpRV(Random(), iUs, iT->TimerPeriod()); |
|
869 TRACE(RDebug::Printf("GG%u\n", gap)); |
|
870 QueueAt(iNextEventTime + gap); |
|
871 } |
|
872 |
|
873 TInt MDiscretePoisson::Event() |
|
874 { |
|
875 PoissonEvent(); |
|
876 if (iContinue) |
|
877 Start(); |
|
878 return MEvent::Event(); |
|
879 } |
|
880 |
|
881 void MDiscretePoisson::PoissonEvent() |
|
882 { |
|
883 } |
|
884 |
|
885 |
|
886 |
|
887 /****************************************************************************** |
|
888 * Consume a specified amount of CPU time in either a continuous |
|
889 * or 'staccato' fashion (i.e. in irregular intervals punctuated by gaps) |
|
890 ******************************************************************************/ |
|
891 class CStaccatoCpuEater : public CActive, public MEvent |
|
892 { |
|
893 public: |
|
894 CStaccatoCpuEater(CLoadSim* aT, MCpuEater* aE, TUint32 aGranularity, TUint32 aMeanGap); |
|
895 ~CStaccatoCpuEater(); |
|
896 void EatMore(TInt64 aMicroseconds); |
|
897 TUint32 WorkDone() const { return iWorkDone; } |
|
898 TUint32 Invocations() const { return iInvocations; } |
|
899 private: |
|
900 virtual void RunL(); |
|
901 virtual void DoCancel(); |
|
902 virtual void Start(); |
|
903 virtual TInt Event(); |
|
904 void StartEating(); |
|
905 private: |
|
906 MCpuEater* iE; |
|
907 TUint32 iWorkDone; |
|
908 TUint32 iInvocations; |
|
909 TUint32 iGranularity; |
|
910 TUint32 iMeanGap; |
|
911 TBool iEating; |
|
912 TInt64 iRemainingCpuTime; |
|
913 TTimeIntervalMicroSeconds iInitialCpuTime; |
|
914 TTimeIntervalMicroSeconds iFinalCpuTime; |
|
915 TInt64 iTotalCpuTime; |
|
916 }; |
|
917 |
|
918 CStaccatoCpuEater::CStaccatoCpuEater(CLoadSim* aT, MCpuEater* aE, TUint32 aGranularity, TUint32 aMeanGap) |
|
919 : CActive(EPriorityIdle), |
|
920 MEvent(aT, 0x53) |
|
921 { |
|
922 iE = aE; |
|
923 iWorkDone = 0; |
|
924 iInvocations = 0; |
|
925 iGranularity = aGranularity; |
|
926 iMeanGap = aMeanGap; |
|
927 iEating = EFalse; |
|
928 iRemainingCpuTime = 0; |
|
929 } |
|
930 |
|
931 CStaccatoCpuEater::~CStaccatoCpuEater() |
|
932 { |
|
933 Cancel(); |
|
934 } |
|
935 |
|
936 void CStaccatoCpuEater::EatMore(TInt64 aMicroseconds) |
|
937 { |
|
938 TRACE(RDebug::Printf("E+%08x %08x\n", I64HIGH(aMicroseconds), I64LOW(aMicroseconds))); |
|
939 iRemainingCpuTime += aMicroseconds; |
|
940 if (!Queued() && !iEating && iRemainingCpuTime>0) |
|
941 StartEating(); |
|
942 } |
|
943 |
|
944 void CStaccatoCpuEater::RunL() |
|
945 { |
|
946 TInt time = KMaxTInt; |
|
947 if (iRemainingCpuTime < TInt64(KMaxTInt)) |
|
948 time = I64LOW(iRemainingCpuTime); |
|
949 ++iInvocations; |
|
950 iE->Eat(time, &iWorkDone); |
|
951 TTimeIntervalMicroSeconds ms; |
|
952 TInt r = RThread().GetCpuTime(ms); |
|
953 assert(r==KErrNone); |
|
954 if (ms < iFinalCpuTime) |
|
955 { |
|
956 SetActive(); |
|
957 TRequestStatus* pS = &iStatus; |
|
958 User::RequestComplete(pS, 0); |
|
959 return; |
|
960 } |
|
961 iEating = EFalse; |
|
962 TInt64 delta = ms.Int64() - iInitialCpuTime.Int64(); |
|
963 iRemainingCpuTime -= delta; |
|
964 iTotalCpuTime += delta; |
|
965 TRACE(RDebug::Printf("D=%8u T=%10u\n",I64LOW(delta),I64LOW(iTotalCpuTime))); |
|
966 if (iRemainingCpuTime > 0) |
|
967 { |
|
968 TUint32 gap = ExpRV(Random(), iMeanGap, iT->TimerPeriod()); |
|
969 TRACE(RDebug::Printf("G%u\n", gap)); |
|
970 QueueAfter(gap); |
|
971 } |
|
972 } |
|
973 |
|
974 void CStaccatoCpuEater::DoCancel() |
|
975 { |
|
976 MEvent::Dequeue(); |
|
977 iEating = EFalse; |
|
978 } |
|
979 |
|
980 void CStaccatoCpuEater::Start() |
|
981 { |
|
982 } |
|
983 |
|
984 TInt CStaccatoCpuEater::Event() |
|
985 { |
|
986 if (!iEating && iRemainingCpuTime>0) |
|
987 { |
|
988 StartEating(); |
|
989 } |
|
990 return MEvent::Event(); |
|
991 } |
|
992 |
|
993 void CStaccatoCpuEater::StartEating() |
|
994 { |
|
995 iEating = ETrue; |
|
996 TInt r = RThread().GetCpuTime(iInitialCpuTime); |
|
997 assert(r==KErrNone); |
|
998 if (iGranularity) |
|
999 { |
|
1000 TInt howmuch = ExpRV(iT->Random(), iGranularity, 1); |
|
1001 TRACE(RDebug::Printf("SE+%08x\n", howmuch)); |
|
1002 iFinalCpuTime = iInitialCpuTime.Int64() + TInt64(howmuch); |
|
1003 } |
|
1004 else |
|
1005 iFinalCpuTime = iInitialCpuTime.Int64() + iRemainingCpuTime; // continuous CPU use |
|
1006 SetActive(); |
|
1007 TRequestStatus* pS = &iStatus; |
|
1008 User::RequestComplete(pS, 0); |
|
1009 } |
|
1010 |
|
1011 |
|
1012 |
|
1013 /****************************************************************************** |
|
1014 * Consume CPU time in a bursty fashion |
|
1015 ******************************************************************************/ |
|
1016 class CBurstyCpuEater : public CStaccatoCpuEater, public MDiscretePoisson |
|
1017 { |
|
1018 public: |
|
1019 struct SParams |
|
1020 { |
|
1021 MCpuEater* iE; |
|
1022 TUint32 iGranularity; |
|
1023 TUint32 iMeanIntraBurstGap; |
|
1024 TUint32 iMeanBurstLength; |
|
1025 TUint32 iMeanInterBurstGap; |
|
1026 }; |
|
1027 public: |
|
1028 CBurstyCpuEater(CLoadSim* aT, const SParams& aParams); |
|
1029 ~CBurstyCpuEater(); |
|
1030 virtual void Start(); |
|
1031 virtual void PoissonEvent(); |
|
1032 public: |
|
1033 TUint32 iMeanBurstLength; |
|
1034 TUint32 iMeanInterBurstGap; |
|
1035 }; |
|
1036 |
|
1037 CBurstyCpuEater::CBurstyCpuEater(CLoadSim* aT, const SParams& aParams) |
|
1038 : CStaccatoCpuEater(aT, aParams.iE, aParams.iGranularity, aParams.iMeanIntraBurstGap), |
|
1039 MDiscretePoisson(aT, 0x42, aParams.iMeanInterBurstGap) |
|
1040 { |
|
1041 iMeanBurstLength = aParams.iMeanBurstLength; |
|
1042 iMeanInterBurstGap = aParams.iMeanInterBurstGap; |
|
1043 } |
|
1044 |
|
1045 CBurstyCpuEater::~CBurstyCpuEater() |
|
1046 { |
|
1047 } |
|
1048 |
|
1049 void CBurstyCpuEater::Start() |
|
1050 { |
|
1051 if (iMeanInterBurstGap > 0) |
|
1052 { |
|
1053 PoissonEvent(); |
|
1054 MDiscretePoisson::Start(); |
|
1055 } |
|
1056 else |
|
1057 { |
|
1058 EatMore(iMeanBurstLength); // one single burst |
|
1059 } |
|
1060 } |
|
1061 |
|
1062 void CBurstyCpuEater::PoissonEvent() |
|
1063 { |
|
1064 TInt burstLen = ExpRV(CStaccatoCpuEater::Random(), iMeanBurstLength, 1); |
|
1065 EatMore(burstLen); |
|
1066 } |
|
1067 |
|
1068 |
|
1069 |
|
1070 /****************************************************************************** |
|
1071 * Stop the active scheduler after a certain time |
|
1072 ******************************************************************************/ |
|
1073 class CTimedStopper : public CActive |
|
1074 { |
|
1075 public: |
|
1076 static CTimedStopper* NewL(); |
|
1077 ~CTimedStopper(); |
|
1078 void Start(TInt64 aMicroseconds); |
|
1079 private: |
|
1080 CTimedStopper(); |
|
1081 virtual void RunL(); |
|
1082 virtual void DoCancel(); |
|
1083 private: |
|
1084 RTimer iTimer; |
|
1085 }; |
|
1086 |
|
1087 CTimedStopper::CTimedStopper() |
|
1088 : CActive(EPriorityHigh) |
|
1089 { |
|
1090 } |
|
1091 |
|
1092 CTimedStopper::~CTimedStopper() |
|
1093 { |
|
1094 Cancel(); |
|
1095 iTimer.Close(); |
|
1096 } |
|
1097 |
|
1098 CTimedStopper* CTimedStopper::NewL() |
|
1099 { |
|
1100 CTimedStopper* p = new (ELeave) CTimedStopper(); |
|
1101 CleanupStack::PushL(p); |
|
1102 User::LeaveIfError(p->iTimer.CreateLocal()); |
|
1103 CleanupStack::Pop(); |
|
1104 return p; |
|
1105 } |
|
1106 |
|
1107 void CTimedStopper::DoCancel() |
|
1108 { |
|
1109 iTimer.Cancel(); |
|
1110 } |
|
1111 |
|
1112 void CTimedStopper::RunL() |
|
1113 { |
|
1114 CActiveScheduler::Stop(); |
|
1115 } |
|
1116 |
|
1117 void CTimedStopper::Start(TInt64 aMicroseconds) |
|
1118 { |
|
1119 TInt p = (TInt)aMicroseconds; |
|
1120 iTimer.HighRes(iStatus, p); |
|
1121 SetActive(); |
|
1122 } |
|
1123 |
|
1124 |
|
1125 |
|
1126 |
|
1127 |
|
1128 /****************************************************************************** |
|
1129 * Do something CPU intensive to consume CPU time |
|
1130 ******************************************************************************/ |
|
1131 class CDefaultCpuEater : public CBase, public MCpuEater |
|
1132 { |
|
1133 public: |
|
1134 CDefaultCpuEater(); |
|
1135 ~CDefaultCpuEater(); |
|
1136 virtual void Eat(TInt aTime, TUint32* aWorkDone); |
|
1137 protected: |
|
1138 TUint64 iX; |
|
1139 }; |
|
1140 |
|
1141 CDefaultCpuEater::CDefaultCpuEater() |
|
1142 { |
|
1143 iX = 1; |
|
1144 } |
|
1145 |
|
1146 CDefaultCpuEater::~CDefaultCpuEater() |
|
1147 { |
|
1148 } |
|
1149 |
|
1150 void CDefaultCpuEater::Eat(TInt aTime, TUint32* aWorkDone) |
|
1151 { |
|
1152 const TUint64 KMagic = UI64LIT(0x9e3779b97f4a7c15); |
|
1153 TUint32 work = WorkValue(aTime); |
|
1154 if (aWorkDone) |
|
1155 *aWorkDone += work; |
|
1156 while (work--) |
|
1157 iX *= KMagic; |
|
1158 } |
|
1159 |
|
1160 |
|
1161 |
|
1162 /****************************************************************************** |
|
1163 * Do something CPU intensive to consume CPU time, partially serialized |
|
1164 ******************************************************************************/ |
|
1165 class CAmdahlCpuEater : public CDefaultCpuEater |
|
1166 { |
|
1167 public: |
|
1168 static CAmdahlCpuEater* NewLC(); |
|
1169 ~CAmdahlCpuEater(); |
|
1170 virtual void Eat(TInt aTime, TUint32* aWorkDone); |
|
1171 protected: |
|
1172 CAmdahlCpuEater(); |
|
1173 void ConstructL(); |
|
1174 protected: |
|
1175 RMutex iMutex; |
|
1176 TUint32 iFactor; |
|
1177 }; |
|
1178 |
|
1179 CAmdahlCpuEater::CAmdahlCpuEater() |
|
1180 { |
|
1181 } |
|
1182 |
|
1183 CAmdahlCpuEater::~CAmdahlCpuEater() |
|
1184 { |
|
1185 iMutex.Close(); |
|
1186 } |
|
1187 |
|
1188 CAmdahlCpuEater* CAmdahlCpuEater::NewLC() |
|
1189 { |
|
1190 CAmdahlCpuEater* p = new (ELeave) CAmdahlCpuEater(); |
|
1191 CleanupStack::PushL(p); |
|
1192 p->ConstructL(); |
|
1193 return p; |
|
1194 } |
|
1195 |
|
1196 void CAmdahlCpuEater::ConstructL() |
|
1197 { |
|
1198 User::LeaveIfError(iMutex.CreateLocal()); |
|
1199 iFactor = KMaxTUint32 / (4*TCpuUsage::N()); |
|
1200 } |
|
1201 |
|
1202 void CAmdahlCpuEater::Eat(TInt aTime, TUint32* aWorkDone) |
|
1203 { |
|
1204 TUint64 t(aTime); |
|
1205 t *= TUint64(iFactor); |
|
1206 t += TUint64(0x80000000u); |
|
1207 t >>= 32; |
|
1208 TInt stime = I64LOW(t); |
|
1209 if (IsCalibrated()) |
|
1210 { |
|
1211 iMutex.Wait(); |
|
1212 CDefaultCpuEater::Eat(stime, aWorkDone); |
|
1213 aTime -= stime; |
|
1214 iMutex.Signal(); |
|
1215 } |
|
1216 CDefaultCpuEater::Eat(aTime, aWorkDone); |
|
1217 } |
|
1218 |
|
1219 |
|
1220 |
|
1221 /****************************************************************************** |
|
1222 * Do something memory intensive to consume CPU time |
|
1223 ******************************************************************************/ |
|
1224 class CMemoryBandwidthEater : public CBase, public MCpuEater |
|
1225 { |
|
1226 public: |
|
1227 static CMemoryBandwidthEater* NewLC(TUint32 aSize, TUint32 aRegionSize, TUint32 aRegionOffset); |
|
1228 ~CMemoryBandwidthEater(); |
|
1229 virtual void Calibrate(); |
|
1230 protected: |
|
1231 CMemoryBandwidthEater(TUint32 aSize, TUint32 aRegionSize, TUint32 aRegionOffset); |
|
1232 void ConstructL(); |
|
1233 virtual void Eat(TInt aTime, TUint32* aWorkDone); |
|
1234 TAny* At(TUint32 aRegion, TUint32 aIndex); |
|
1235 TAny* StepWithinRegion(TAny* aInitial, TUint32 aStep); |
|
1236 protected: |
|
1237 volatile TUint32 iRegionAlloc; |
|
1238 TUint32 iPageSize; |
|
1239 TUint32 iSize; // multiple of page size |
|
1240 TAny* iData; // page aligned |
|
1241 RChunk iChunk; |
|
1242 TUint8 iLog2RegionSize; // log2(bytes per region) |
|
1243 TUint8 iLog2RO; // log2(offset from region n to n+1 in bytes) |
|
1244 TUint8 iLog2PageSize; |
|
1245 TUint8 iRegionBits; // number of bits to specify region |
|
1246 TUint32 iNRgn; |
|
1247 TUint32 iRegionMask; |
|
1248 TUint32 iLowerIndexMask; |
|
1249 TUint32 iUpperIndexMask; |
|
1250 }; |
|
1251 |
|
1252 TUint32 AtomicClearLS1(volatile TUint32* aMask) |
|
1253 { |
|
1254 TUint32 initial = *aMask; |
|
1255 TUint32 final; |
|
1256 do { |
|
1257 final = initial & (initial-1); |
|
1258 } while(!__e32_atomic_cas_ord32(aMask, &initial, final)); |
|
1259 return initial; |
|
1260 } |
|
1261 |
|
1262 TInt AtomicAllocBit(volatile TUint32* aMask) |
|
1263 { |
|
1264 return __e32_find_ls1_32(AtomicClearLS1(aMask)); |
|
1265 } |
|
1266 |
|
1267 TUint32 AtomicFreeBit(volatile TUint32* aMask, TInt aBit) |
|
1268 { |
|
1269 return __e32_atomic_ior_ord32(aMask, 1u<<aBit); |
|
1270 } |
|
1271 |
|
1272 |
|
1273 |
|
1274 CMemoryBandwidthEater* CMemoryBandwidthEater::NewLC(TUint32 aSize, TUint32 aRegionSize, TUint32 aRegionOffset) |
|
1275 { |
|
1276 CMemoryBandwidthEater* p = new (ELeave) CMemoryBandwidthEater(aSize, aRegionSize, aRegionOffset); |
|
1277 CleanupStack::PushL(p); |
|
1278 p->ConstructL(); |
|
1279 return p; |
|
1280 } |
|
1281 |
|
1282 CMemoryBandwidthEater::CMemoryBandwidthEater(TUint32 aSize, TUint32 aRegionSize, TUint32 aRegionOffset) |
|
1283 { |
|
1284 TInt r = HAL::Get(HAL::EMemoryPageSize, (TInt&)iPageSize); |
|
1285 assert(r==KErrNone); |
|
1286 iLog2PageSize = (TUint8)__e32_find_ms1_32(iPageSize); |
|
1287 assert( !(aRegionSize & (aRegionSize-1)) ); |
|
1288 assert( !(aRegionOffset & (aRegionOffset-1)) ); |
|
1289 iLog2RegionSize = (TUint8)__e32_find_ms1_32(aRegionSize); |
|
1290 iLog2RO = (TUint8)__e32_find_ms1_32(aRegionOffset); |
|
1291 TUint32 round = (aRegionSize>iPageSize) ? aRegionSize : iPageSize; |
|
1292 iSize = (aSize + round - 1) &~ (round - 1); |
|
1293 --iSize; |
|
1294 iSize |= (iSize>>1); |
|
1295 iSize |= (iSize>>2); |
|
1296 iSize |= (iSize>>4); |
|
1297 iSize |= (iSize>>8); |
|
1298 iSize |= (iSize>>16); |
|
1299 ++iSize; |
|
1300 iNRgn = iSize >> iLog2RegionSize; |
|
1301 if (iNRgn>=32) |
|
1302 iRegionAlloc = ~0u; |
|
1303 else |
|
1304 iRegionAlloc = ~((~0u)<<iNRgn); |
|
1305 iRegionBits = TUint8(1 + __e32_find_ms1_32(iNRgn-1)); |
|
1306 iLowerIndexMask = ~((~0u)<<iLog2RO); |
|
1307 iRegionMask = (~((~0u)<<iRegionBits))<<iLog2RO; |
|
1308 iUpperIndexMask = ((iSize-1)>>(iRegionBits+iLog2RO))<<(iRegionBits+iLog2RO); |
|
1309 } |
|
1310 |
|
1311 CMemoryBandwidthEater::~CMemoryBandwidthEater() |
|
1312 { |
|
1313 iChunk.Close(); |
|
1314 } |
|
1315 |
|
1316 void CMemoryBandwidthEater::ConstructL() |
|
1317 { |
|
1318 TInt mask = (1<<20)-1; |
|
1319 TInt maxSize = (TInt(iSize)+mask)&~mask; |
|
1320 User::LeaveIfError(iChunk.CreateLocal(iSize, maxSize, EOwnerThread)); |
|
1321 iData = iChunk.Base(); |
|
1322 } |
|
1323 |
|
1324 void CMemoryBandwidthEater::Calibrate() |
|
1325 { |
|
1326 MCpuEater::Calibrate(); |
|
1327 MCpuEater::Calibrate(); |
|
1328 } |
|
1329 |
|
1330 TAny* CMemoryBandwidthEater::At(TUint32 aRegion, TUint32 aIndex) |
|
1331 { |
|
1332 TUint32 offset = aIndex & iLowerIndexMask; |
|
1333 offset |= (aRegion<<iLog2RO); |
|
1334 offset |= ((aIndex<<iRegionBits) & iUpperIndexMask); |
|
1335 return ((TUint8*)iData) + offset; |
|
1336 } |
|
1337 |
|
1338 TAny* CMemoryBandwidthEater::StepWithinRegion(TAny* aInitial, TUint32 aStep) |
|
1339 { |
|
1340 TUintPtr offset = TUintPtr(aInitial) - TUintPtr(iData); |
|
1341 TUintPtr offset2 = offset + (aStep & iLowerIndexMask); |
|
1342 if ((offset^offset2)&iRegionMask) |
|
1343 { |
|
1344 offset2 -= (iLowerIndexMask+1); |
|
1345 aStep += (iLowerIndexMask+1); |
|
1346 } |
|
1347 offset2 += ((aStep<<iRegionBits)&iUpperIndexMask); |
|
1348 offset2 &= (iSize-1); |
|
1349 return ((TUint8*)iData) + offset2; |
|
1350 } |
|
1351 |
|
1352 void CMemoryBandwidthEater::Eat(TInt aTime, TUint32* aWorkDone) |
|
1353 { |
|
1354 TUint32 work = WorkValue(aTime); |
|
1355 if (aWorkDone) |
|
1356 *aWorkDone += work; |
|
1357 TInt region = AtomicAllocBit(&iRegionAlloc); |
|
1358 assert(region>=0); |
|
1359 TUint32 done = 0; |
|
1360 TUint32 rgnsz = 1u << iLog2RegionSize; |
|
1361 for (; work; work-=done) |
|
1362 { |
|
1363 done = (work>rgnsz) ? rgnsz : work; |
|
1364 TUint8* p = (TUint8*)At(region,0); |
|
1365 TUint8 prev = *p; |
|
1366 TUint32 n = done; |
|
1367 do { |
|
1368 TUint8* q = p; |
|
1369 p = (TUint8*)StepWithinRegion(p, 31); |
|
1370 *q = *p; |
|
1371 } while(--n); |
|
1372 *p = prev; |
|
1373 } |
|
1374 AtomicFreeBit(&iRegionAlloc, region); |
|
1375 } |
|
1376 |
|
1377 |
|
1378 /****************************************************************************** |
|
1379 * Do lots of atomic operations to consume CPU time |
|
1380 ******************************************************************************/ |
|
1381 class CAtomicMemoryBandwidthEater : public CMemoryBandwidthEater |
|
1382 { |
|
1383 public: |
|
1384 static CAtomicMemoryBandwidthEater* NewLC(TUint32 aSize); |
|
1385 ~CAtomicMemoryBandwidthEater(); |
|
1386 protected: |
|
1387 CAtomicMemoryBandwidthEater(TUint32 aSize); |
|
1388 void ConstructL(); |
|
1389 virtual void Eat(TInt aTime, TUint32* aWorkDone); |
|
1390 protected: |
|
1391 volatile TUint32 iX; |
|
1392 }; |
|
1393 |
|
1394 CAtomicMemoryBandwidthEater* CAtomicMemoryBandwidthEater::NewLC(TUint32 aSize) |
|
1395 { |
|
1396 CAtomicMemoryBandwidthEater* p = new (ELeave) CAtomicMemoryBandwidthEater(aSize); |
|
1397 CleanupStack::PushL(p); |
|
1398 p->ConstructL(); |
|
1399 return p; |
|
1400 } |
|
1401 |
|
1402 CAtomicMemoryBandwidthEater::CAtomicMemoryBandwidthEater(TUint32 aSize) |
|
1403 : CMemoryBandwidthEater(aSize, aSize, aSize) |
|
1404 { |
|
1405 iX = TUint32(this) ^ RThread().Id().operator TUint(); |
|
1406 iX *= 0x9e3779b9u; |
|
1407 } |
|
1408 |
|
1409 CAtomicMemoryBandwidthEater::~CAtomicMemoryBandwidthEater() |
|
1410 { |
|
1411 } |
|
1412 |
|
1413 void CAtomicMemoryBandwidthEater::ConstructL() |
|
1414 { |
|
1415 CMemoryBandwidthEater::ConstructL(); |
|
1416 } |
|
1417 |
|
1418 TUint32 AtomicRandom(volatile TUint32* a) |
|
1419 { |
|
1420 TUint32 initial = *a; |
|
1421 TUint32 final; |
|
1422 do { |
|
1423 final = 69069*initial + 41; |
|
1424 } while(!__e32_atomic_cas_ord32(a, &initial, final)); |
|
1425 return final; |
|
1426 } |
|
1427 |
|
1428 void CAtomicMemoryBandwidthEater::Eat(TInt aTime, TUint32* aWorkDone) |
|
1429 { |
|
1430 TUint32 work = WorkValue(aTime); |
|
1431 if (aWorkDone) |
|
1432 *aWorkDone += work; |
|
1433 volatile TUint32* pW = (volatile TUint32*)iData; |
|
1434 const TUint32 mask = iSize/sizeof(TUint32)-1; |
|
1435 TUint32 x = AtomicRandom(&iX); |
|
1436 TUint32 n = work; |
|
1437 do { |
|
1438 TUint32 offset = (x>>2) & mask; |
|
1439 x = 69069*x+41; |
|
1440 __e32_atomic_add_rlx32(pW+offset, 1); |
|
1441 } while(--n); |
|
1442 } |
|
1443 |
|
1444 |
|
1445 /****************************************************************************** |
|
1446 * |
|
1447 ******************************************************************************/ |
|
1448 struct SThreadResult |
|
1449 { |
|
1450 TUint64 iElapsedTime; |
|
1451 TUint64 iCpuTime; |
|
1452 TUint32 iWorkDone; |
|
1453 TUint32 iInvocations; |
|
1454 }; |
|
1455 |
|
1456 struct SThreadParams |
|
1457 { |
|
1458 TInt64 iTestTime; |
|
1459 |
|
1460 TInt iId; |
|
1461 TUint32 iCpuAffinity; |
|
1462 |
|
1463 TInt iPriority; |
|
1464 RSemaphore iTurnstile; |
|
1465 |
|
1466 SThreadResult* iResult; |
|
1467 TInt iGroupId; |
|
1468 |
|
1469 MCpuEater* iE; |
|
1470 TUint32 iGranularity; |
|
1471 TUint32 iMeanIntraBurstGap; |
|
1472 TUint32 iMeanBurstLength; |
|
1473 TUint32 iMeanInterBurstGap; |
|
1474 }; |
|
1475 |
|
1476 class MThreadCompletion |
|
1477 { |
|
1478 public: |
|
1479 virtual void Complete(TBool aOk, SThreadParams* aParams)=0; |
|
1480 }; |
|
1481 |
|
1482 class CThreadI : public CBase |
|
1483 { |
|
1484 public: |
|
1485 CThreadI(); |
|
1486 ~CThreadI(); |
|
1487 static TInt ThreadFunc(TAny* aPtr); |
|
1488 TInt Run(); |
|
1489 void InitL(); |
|
1490 public: |
|
1491 CTrapCleanup* iCleanup; |
|
1492 CActiveScheduler* iAS; |
|
1493 CLoadSim* iL; |
|
1494 CBurstyCpuEater* iB; |
|
1495 CTimedStopper* iStopper; |
|
1496 RSemaphore iTurnstile; |
|
1497 SThreadParams* iParams; |
|
1498 }; |
|
1499 |
|
1500 CThreadI::CThreadI() |
|
1501 { |
|
1502 } |
|
1503 |
|
1504 CThreadI::~CThreadI() |
|
1505 { |
|
1506 iTurnstile.Close(); |
|
1507 delete iStopper; |
|
1508 delete iB; |
|
1509 delete iL; |
|
1510 delete iAS; |
|
1511 delete iCleanup; |
|
1512 } |
|
1513 |
|
1514 TInt CThreadI::ThreadFunc(TAny* aPtr) |
|
1515 { |
|
1516 CThreadI* p = new CThreadI; |
|
1517 if (!p) |
|
1518 return KErrNoMemory; |
|
1519 p->iParams = (SThreadParams*)aPtr; |
|
1520 return p->Run(); |
|
1521 } |
|
1522 |
|
1523 void CThreadI::InitL() |
|
1524 { |
|
1525 iTurnstile = iParams->iTurnstile; |
|
1526 User::LeaveIfError(iTurnstile.Duplicate(RThread(), EOwnerThread)); |
|
1527 iAS = new (ELeave) CActiveScheduler; |
|
1528 CActiveScheduler::Install(iAS); |
|
1529 iL = CLoadSim::NewL(); |
|
1530 CActiveScheduler::Add(iL); |
|
1531 const CBurstyCpuEater::SParams* params = (const CBurstyCpuEater::SParams*)&iParams->iE; |
|
1532 iB = new (ELeave) CBurstyCpuEater(iL, *params); |
|
1533 CActiveScheduler::Add(iB); |
|
1534 iStopper = CTimedStopper::NewL(); |
|
1535 CActiveScheduler::Add(iStopper); |
|
1536 memclr(iParams->iResult, sizeof(*iParams->iResult)); |
|
1537 RThread().SetPriority(TThreadPriority(iParams->iPriority)); |
|
1538 UserSvr::HalFunction(EHalGroupKernel, EKernelHalLockThreadToCpu, (TAny*)iParams->iCpuAffinity, 0); |
|
1539 } |
|
1540 |
|
1541 TInt CThreadI::Run() |
|
1542 { |
|
1543 iCleanup = CTrapCleanup::New(); |
|
1544 if (!iCleanup) |
|
1545 return KErrNoMemory; |
|
1546 TRAPD(r,InitL()); |
|
1547 if (r == KErrNone) |
|
1548 { |
|
1549 TThreadCpuUsageSample initial; |
|
1550 TThreadCpuUsageSample final; |
|
1551 RThread::Rendezvous(KErrNone); |
|
1552 iTurnstile.Wait(); |
|
1553 iB->Start(); |
|
1554 initial.Sample(RThread()); |
|
1555 iStopper->Start(iParams->iTestTime); |
|
1556 CActiveScheduler::Start(); |
|
1557 final.Sample(RThread()); |
|
1558 iParams->iResult->iWorkDone = iB->WorkDone(); |
|
1559 iParams->iResult->iInvocations = iB->Invocations(); |
|
1560 iParams->iResult->iElapsedTime = final.ElapsedTimeDelta(initial); |
|
1561 iParams->iResult->iCpuTime = final.CpuTimeDelta(initial); |
|
1562 } |
|
1563 delete this; |
|
1564 return r; |
|
1565 } |
|
1566 |
|
1567 |
|
1568 /****************************************************************************** |
|
1569 * |
|
1570 ******************************************************************************/ |
|
1571 class CThreadX : public CActive |
|
1572 { |
|
1573 public: |
|
1574 static CThreadX* NewL(SThreadParams* aParams, MThreadCompletion* aComplete); |
|
1575 static CThreadX* NewLC(SThreadParams* aParams, MThreadCompletion* aComplete); |
|
1576 CThreadX(); |
|
1577 ~CThreadX(); |
|
1578 void ConstructL(); |
|
1579 virtual void RunL(); |
|
1580 virtual void DoCancel(); |
|
1581 public: |
|
1582 RThread iThread; |
|
1583 RTimer iTimer; |
|
1584 SThreadParams* iParams; |
|
1585 MThreadCompletion* iComplete; |
|
1586 }; |
|
1587 |
|
1588 CThreadX::CThreadX() |
|
1589 : CActive(EPriorityStandard) |
|
1590 { |
|
1591 } |
|
1592 |
|
1593 CThreadX::~CThreadX() |
|
1594 { |
|
1595 Cancel(); |
|
1596 iTimer.Close(); |
|
1597 iThread.Close(); |
|
1598 } |
|
1599 |
|
1600 CThreadX* CThreadX::NewL(SThreadParams* aParams, MThreadCompletion* aComplete) |
|
1601 { |
|
1602 CThreadX* p = NewLC(aParams, aComplete); |
|
1603 CleanupStack::Pop(); |
|
1604 return p; |
|
1605 } |
|
1606 |
|
1607 CThreadX* CThreadX::NewLC(SThreadParams* aParams, MThreadCompletion* aComplete) |
|
1608 { |
|
1609 CThreadX* p = new (ELeave) CThreadX(); |
|
1610 p->iParams = aParams; |
|
1611 p->iComplete = aComplete; |
|
1612 CleanupStack::PushL(p); |
|
1613 p->ConstructL(); |
|
1614 return p; |
|
1615 } |
|
1616 |
|
1617 const TInt KThreadHeapMin = 0x1000; |
|
1618 const TInt KThreadHeapMax = 0x200000; |
|
1619 void CThreadX::ConstructL() |
|
1620 { |
|
1621 CActiveScheduler::Add(this); |
|
1622 TRequestStatus s0, s1; |
|
1623 User::LeaveIfError(iTimer.CreateLocal()); |
|
1624 User::LeaveIfError(iThread.Create(KNullDesC, &CThreadI::ThreadFunc, 0x1000, KThreadHeapMin, KThreadHeapMax, iParams)); |
|
1625 iThread.Rendezvous(s1); |
|
1626 if (s1!=KRequestPending) |
|
1627 { |
|
1628 User::WaitForRequest(s1); |
|
1629 User::Leave(s1.Int()); |
|
1630 } |
|
1631 iTimer.After(s0, 5*1000*1000); |
|
1632 iThread.Resume(); |
|
1633 User::WaitForRequest(s0, s1); |
|
1634 if (s1==KRequestPending) |
|
1635 { |
|
1636 iThread.Terminate(KErrCouldNotStart); |
|
1637 User::WaitForRequest(s1); |
|
1638 User::Leave(KErrTimedOut); |
|
1639 } |
|
1640 iTimer.Cancel(); |
|
1641 User::WaitForRequest(s0); |
|
1642 if (iThread.ExitType() != EExitPending) |
|
1643 { |
|
1644 User::Leave(KErrDied); |
|
1645 } |
|
1646 iThread.Logon(iStatus); |
|
1647 if (iStatus!=KRequestPending) |
|
1648 { |
|
1649 User::WaitForRequest(iStatus); |
|
1650 User::Leave(iStatus.Int()); |
|
1651 } |
|
1652 SetActive(); |
|
1653 User::LeaveIfError(s1.Int()); |
|
1654 } |
|
1655 |
|
1656 void CThreadX::DoCancel() |
|
1657 { |
|
1658 iThread.Terminate(KErrCouldNotStart); |
|
1659 } |
|
1660 |
|
1661 void CThreadX::RunL() |
|
1662 { |
|
1663 TBool ok = ETrue; |
|
1664 if (iThread.ExitType() != EExitKill) |
|
1665 ok = EFalse; |
|
1666 if (iThread.ExitReason() != KErrNone) |
|
1667 ok = EFalse; |
|
1668 if (iComplete) |
|
1669 iComplete->Complete(ok, iParams); |
|
1670 } |
|
1671 |
|
1672 |
|
1673 /****************************************************************************** |
|
1674 * |
|
1675 ******************************************************************************/ |
|
1676 struct STestThreadDesc |
|
1677 { |
|
1678 TUint32 iCpuAffinity; |
|
1679 TInt iPriority; |
|
1680 TInt iGroupId; |
|
1681 TUint16 iEaterType; |
|
1682 TUint16 iEaterInstance; |
|
1683 TUint32 iGranularity; |
|
1684 TUint32 iMeanIntraBurstGap; |
|
1685 TUint32 iMeanBurstLength; |
|
1686 TUint32 iMeanInterBurstGap; |
|
1687 |
|
1688 static STestThreadDesc* ContinuousL(TInt aPri = EPriorityNormal); |
|
1689 static STestThreadDesc* ContinuousLC(TInt aPri = EPriorityNormal); |
|
1690 static STestThreadDesc* StaccatoL(TUint32 aGranularity, TUint32 aMeanGap, TInt aPri = EPriorityNormal); |
|
1691 static STestThreadDesc* StaccatoLC(TUint32 aGranularity, TUint32 aMeanGap, TInt aPri = EPriorityNormal); |
|
1692 }; |
|
1693 |
|
1694 STestThreadDesc* STestThreadDesc::ContinuousLC(TInt aPri) |
|
1695 { |
|
1696 STestThreadDesc* p = (STestThreadDesc*)User::AllocLC(sizeof(STestThreadDesc)); |
|
1697 p->iCpuAffinity = 0xffffffff; |
|
1698 p->iPriority = aPri; |
|
1699 p->iGroupId = 0; |
|
1700 p->iEaterType = EEaterStd; |
|
1701 p->iEaterInstance = 0; |
|
1702 p->iGranularity = 0; |
|
1703 p->iMeanIntraBurstGap = 0; |
|
1704 p->iMeanBurstLength = KMaxTInt32; |
|
1705 p->iMeanInterBurstGap = 0; |
|
1706 return p; |
|
1707 } |
|
1708 |
|
1709 STestThreadDesc* STestThreadDesc::ContinuousL(TInt aPri) |
|
1710 { |
|
1711 STestThreadDesc* p = ContinuousLC(aPri); |
|
1712 CleanupStack::Pop(); |
|
1713 return p; |
|
1714 } |
|
1715 |
|
1716 STestThreadDesc* STestThreadDesc::StaccatoLC(TUint32 aGranularity, TUint32 aMeanGap, TInt aPri) |
|
1717 { |
|
1718 STestThreadDesc* p = (STestThreadDesc*)User::AllocLC(sizeof(STestThreadDesc)); |
|
1719 p->iCpuAffinity = 0xffffffff; |
|
1720 p->iPriority = aPri; |
|
1721 p->iGroupId = 0; |
|
1722 p->iEaterType = EEaterStd; |
|
1723 p->iEaterInstance = 0; |
|
1724 p->iGranularity = aGranularity; |
|
1725 p->iMeanIntraBurstGap = aMeanGap; |
|
1726 p->iMeanBurstLength = KMaxTInt32; |
|
1727 p->iMeanInterBurstGap = 0; |
|
1728 return p; |
|
1729 } |
|
1730 |
|
1731 STestThreadDesc* STestThreadDesc::StaccatoL(TUint32 aGranularity, TUint32 aMeanGap, TInt aPri) |
|
1732 { |
|
1733 STestThreadDesc* p = StaccatoLC(aGranularity, aMeanGap, aPri); |
|
1734 CleanupStack::Pop(); |
|
1735 return p; |
|
1736 } |
|
1737 |
|
1738 |
|
1739 class CTest : public CBase, public MThreadCompletion |
|
1740 { |
|
1741 public: |
|
1742 struct SStats |
|
1743 { |
|
1744 TInt64 iTotalCpu; |
|
1745 TInt64 iMinCpu; |
|
1746 TInt64 iMaxCpu; |
|
1747 TInt64 iTotalWork; |
|
1748 TInt64 iMinWork; |
|
1749 TInt64 iMaxWork; |
|
1750 }; |
|
1751 public: |
|
1752 static CTest* NewL(TInt64 aTestTime, TInt aNumTypes, ...); |
|
1753 ~CTest(); |
|
1754 RPointerArray<SThreadParams>& Threads() |
|
1755 { return iP; } |
|
1756 TInt Execute(); |
|
1757 void PrintResults() const; |
|
1758 void GetStats(SStats& aStats, TInt aFirstThread=0, TInt aCount=KMaxTInt) const; |
|
1759 TInt64 TotalCpuAll() const; |
|
1760 private: |
|
1761 CTest(); |
|
1762 void ConstructL(TInt64 aTestTime, TInt aNumTypes, VA_LIST aList); |
|
1763 SThreadParams* AddThreadParamsL(); |
|
1764 CThreadX* AddThreadXL(SThreadParams* aParams); |
|
1765 |
|
1766 virtual void Complete(TBool aOk, SThreadParams* aParams); |
|
1767 private: |
|
1768 RPointerArray<SThreadParams> iP; |
|
1769 RPointerArray<CThreadX> iTX; |
|
1770 REaterArray iEaters; |
|
1771 RSemaphore iTurnstile; |
|
1772 TInt iCompleteCount; |
|
1773 TCpuUsage iInitialCpuUsage; |
|
1774 TCpuUsage iFinalCpuUsage; |
|
1775 }; |
|
1776 |
|
1777 CTest::CTest() |
|
1778 : iP(32), |
|
1779 iTX(32) |
|
1780 { |
|
1781 } |
|
1782 |
|
1783 CTest::~CTest() |
|
1784 { |
|
1785 iTX.ResetAndDestroy(); |
|
1786 |
|
1787 TInt i; |
|
1788 TInt c = iP.Count(); |
|
1789 for (i=0; i<c; ++i) |
|
1790 { |
|
1791 SThreadParams* p = iP[i]; |
|
1792 iP[i] = 0; |
|
1793 if (p) |
|
1794 { |
|
1795 User::Free(p->iResult); |
|
1796 User::Free(p); |
|
1797 } |
|
1798 } |
|
1799 iP.Close(); |
|
1800 iEaters.Close(); |
|
1801 iTurnstile.Close(); |
|
1802 } |
|
1803 |
|
1804 CTest* CTest::NewL(TInt64 aTestTime, TInt aNumTypes, ...) |
|
1805 { |
|
1806 VA_LIST list; |
|
1807 VA_START(list, aNumTypes); |
|
1808 CTest* p = new (ELeave) CTest; |
|
1809 CleanupStack::PushL(p); |
|
1810 p->ConstructL(aTestTime, aNumTypes, list); |
|
1811 CleanupStack::Pop(); |
|
1812 return p; |
|
1813 } |
|
1814 |
|
1815 SThreadParams* CTest::AddThreadParamsL() |
|
1816 { |
|
1817 SThreadResult* tr = (SThreadResult*)User::AllocLC(sizeof(SThreadResult)); |
|
1818 SThreadParams* tp = (SThreadParams*)User::AllocLC(sizeof(SThreadParams)); |
|
1819 memclr(tr, sizeof(SThreadResult)); |
|
1820 tp->iResult = tr; |
|
1821 iP.AppendL(tp); |
|
1822 CleanupStack::Pop(2); |
|
1823 tp->iTurnstile = iTurnstile; |
|
1824 return tp; |
|
1825 } |
|
1826 |
|
1827 CThreadX* CTest::AddThreadXL(SThreadParams* aP) |
|
1828 { |
|
1829 if (aP->iGranularity==0 && aP->iMeanInterBurstGap==0) |
|
1830 { |
|
1831 // continuous use thread |
|
1832 if (TInt64(aP->iMeanBurstLength) >= aP->iTestTime) |
|
1833 aP->iMeanBurstLength = I64LOW(aP->iTestTime) + (I64LOW(aP->iTestTime)>>1); |
|
1834 } |
|
1835 CThreadX* tx = CThreadX::NewLC(aP, this); |
|
1836 iTX.AppendL(tx); |
|
1837 CleanupStack::Pop(); |
|
1838 return tx; |
|
1839 } |
|
1840 |
|
1841 void CTest::Complete(TBool aOk, SThreadParams*) |
|
1842 { |
|
1843 if (!aOk || --iCompleteCount==0) |
|
1844 CActiveScheduler::Stop(); |
|
1845 } |
|
1846 |
|
1847 |
|
1848 void CTest::ConstructL(TInt64 aTestTime, TInt aNumTypes, VA_LIST aList) |
|
1849 { |
|
1850 typedef const STestThreadDesc* TTestThreadDescPtrC; |
|
1851 |
|
1852 User::LeaveIfError(iTurnstile.CreateLocal(0)); |
|
1853 TInt tt; |
|
1854 TInt tid = 0; |
|
1855 for (tt=0; tt<aNumTypes; ++tt) |
|
1856 { |
|
1857 TInt nThreads = VA_ARG(aList, TInt); |
|
1858 TInt inc = 0; |
|
1859 const TTestThreadDescPtrC* ppttd = 0; |
|
1860 TTestThreadDescPtrC pttd = 0; |
|
1861 if (nThreads < 0) |
|
1862 { |
|
1863 ppttd = VA_ARG(aList, const TTestThreadDescPtrC*); |
|
1864 nThreads = -nThreads; |
|
1865 inc = 1; |
|
1866 } |
|
1867 else |
|
1868 { |
|
1869 pttd = VA_ARG(aList, TTestThreadDescPtrC); |
|
1870 ppttd = &pttd; |
|
1871 } |
|
1872 TInt k; |
|
1873 for (k=0; k<nThreads; ++k, ++tid) |
|
1874 { |
|
1875 const STestThreadDesc& ttd = **ppttd; |
|
1876 ppttd += inc; |
|
1877 SThreadParams* tp = AddThreadParamsL(); |
|
1878 tp->iId = tid; |
|
1879 tp->iTestTime = aTestTime; |
|
1880 tp->iCpuAffinity = ttd.iCpuAffinity; |
|
1881 tp->iPriority = ttd.iPriority; |
|
1882 tp->iGroupId = ttd.iGroupId; |
|
1883 tp->iE = iEaters.FindOrCreateL(ttd.iEaterType, ttd.iEaterInstance); |
|
1884 tp->iGranularity = ttd.iGranularity; |
|
1885 tp->iMeanIntraBurstGap = ttd.iMeanIntraBurstGap; |
|
1886 tp->iMeanBurstLength = ttd.iMeanBurstLength; |
|
1887 tp->iMeanInterBurstGap = ttd.iMeanInterBurstGap; |
|
1888 AddThreadXL(tp); |
|
1889 } |
|
1890 } |
|
1891 } |
|
1892 |
|
1893 TInt CTest::Execute() |
|
1894 { |
|
1895 iCompleteCount = iP.Count(); |
|
1896 iInitialCpuUsage.Sample(); |
|
1897 iTurnstile.Signal(iCompleteCount); |
|
1898 CActiveScheduler::Start(); |
|
1899 iFinalCpuUsage.Sample(); |
|
1900 return iCompleteCount ? KErrGeneral : KErrNone; |
|
1901 } |
|
1902 |
|
1903 void CTest::GetStats(SStats& a, TInt aFirstThread, TInt aCount) const |
|
1904 { |
|
1905 a.iTotalCpu = 0; |
|
1906 a.iMinCpu = KMaxTInt64; |
|
1907 a.iMaxCpu = KMinTInt64; |
|
1908 a.iTotalWork = 0; |
|
1909 a.iMinWork = KMaxTInt64; |
|
1910 a.iMaxWork = KMinTInt64; |
|
1911 TInt nt = iP.Count(); |
|
1912 if (aFirstThread > nt) |
|
1913 aFirstThread = nt; |
|
1914 if (aCount > nt - aFirstThread) |
|
1915 aCount = nt - aFirstThread; |
|
1916 TInt i = aFirstThread; |
|
1917 for (; i<aFirstThread+aCount; ++i) |
|
1918 { |
|
1919 SThreadResult* tr = iP[i]->iResult; |
|
1920 TInt64 cpu = tr->iCpuTime; |
|
1921 TInt64 work = tr->iWorkDone; |
|
1922 a.iTotalCpu += cpu; |
|
1923 a.iTotalWork += work; |
|
1924 if (cpu < a.iMinCpu) |
|
1925 a.iMinCpu = cpu; |
|
1926 if (cpu > a.iMaxCpu) |
|
1927 a.iMaxCpu = cpu; |
|
1928 if (work < a.iMinWork) |
|
1929 a.iMinWork = work; |
|
1930 if (work > a.iMaxWork) |
|
1931 a.iMaxWork = work; |
|
1932 } |
|
1933 } |
|
1934 |
|
1935 TInt64 CTest::TotalCpuAll() const |
|
1936 { |
|
1937 TInt i; |
|
1938 TInt nc = TCpuUsage::N(); |
|
1939 TInt64 totalCpuAll = 0; |
|
1940 for (i=0; i<nc; ++i) |
|
1941 { |
|
1942 TInt64 u = iFinalCpuUsage.CpuTimeDelta(iInitialCpuUsage, i); |
|
1943 totalCpuAll += u; |
|
1944 } |
|
1945 return totalCpuAll; |
|
1946 } |
|
1947 |
|
1948 void CTest::PrintResults() const |
|
1949 { |
|
1950 TInt i; |
|
1951 TInt nt = iP.Count(); |
|
1952 TInt nc = TCpuUsage::N(); |
|
1953 TInt64 totalCpuAll = 0; |
|
1954 TInt64 totalCpu = 0; |
|
1955 TInt64 totalWork = 0; |
|
1956 for (i=0; i<nt; ++i) |
|
1957 { |
|
1958 SThreadResult* tr = iP[i]->iResult; |
|
1959 test.Printf(_L("%2u: E=%10u C=%10u I=%10u W=%10u\n"), |
|
1960 i, I64LOW(tr->iElapsedTime), I64LOW(tr->iCpuTime), tr->iInvocations, tr->iWorkDone ); |
|
1961 totalCpu += tr->iCpuTime; |
|
1962 totalWork += TInt64(tr->iWorkDone); |
|
1963 } |
|
1964 test.Printf(_L("Total C=%12Lu W=%12Lu\n"), totalCpu, totalWork); |
|
1965 for (i=0; i<nc; ++i) |
|
1966 { |
|
1967 TInt64 u = iFinalCpuUsage.CpuTimeDelta(iInitialCpuUsage, i); |
|
1968 totalCpuAll += u; |
|
1969 test.Printf(_L("Cpu%1u: %10u "), i, I64LOW(u)); |
|
1970 } |
|
1971 test.Printf(_L("\n")); |
|
1972 test.Printf(_L("Total %12Lu\n"), totalCpuAll); |
|
1973 } |
|
1974 |
|
1975 |
|
1976 |
|
1977 MCpuEater* REaterArray::CreateLC(TInt aType) |
|
1978 { |
|
1979 switch (aType) |
|
1980 { |
|
1981 case EEaterStd: |
|
1982 { |
|
1983 CDefaultCpuEater* p = new (ELeave) CDefaultCpuEater(); |
|
1984 CleanupStack::PushL(p); |
|
1985 p->Calibrate(); |
|
1986 return p; |
|
1987 } |
|
1988 case EEaterMemoryLocalS: |
|
1989 { |
|
1990 CMemoryBandwidthEater* p = CMemoryBandwidthEater::NewLC(0x8000, 0x0800, 0x0800); |
|
1991 p->Calibrate(); |
|
1992 return p; |
|
1993 } |
|
1994 case EEaterMemoryNonLocalS: |
|
1995 { |
|
1996 CMemoryBandwidthEater* p = CMemoryBandwidthEater::NewLC(0x100000, 0x10000, 0x4); |
|
1997 p->Calibrate(); |
|
1998 return p; |
|
1999 } |
|
2000 case EEaterMemoryLocalU: |
|
2001 { |
|
2002 CMemoryBandwidthEater* p = CMemoryBandwidthEater::NewLC(0x4000, 0x4000, 0x4000); |
|
2003 p->Calibrate(); |
|
2004 return p; |
|
2005 } |
|
2006 case EEaterMemoryNonLocalU: |
|
2007 { |
|
2008 CMemoryBandwidthEater* p = CMemoryBandwidthEater::NewLC(0x80000, 0x80000, 0x80000); |
|
2009 p->Calibrate(); |
|
2010 return p; |
|
2011 } |
|
2012 case EEaterMemoryAtomic: |
|
2013 { |
|
2014 CAtomicMemoryBandwidthEater* p = CAtomicMemoryBandwidthEater::NewLC(0x1000); |
|
2015 p->Calibrate(); |
|
2016 return p; |
|
2017 } |
|
2018 case EEaterMemoryAtomic2: |
|
2019 { |
|
2020 CAtomicMemoryBandwidthEater* p = CAtomicMemoryBandwidthEater::NewLC(0x8000); |
|
2021 p->Calibrate(); |
|
2022 return p; |
|
2023 } |
|
2024 case EEaterAmdahl: |
|
2025 { |
|
2026 CAmdahlCpuEater* p = CAmdahlCpuEater::NewLC(); |
|
2027 p->Calibrate(); |
|
2028 return p; |
|
2029 } |
|
2030 default: |
|
2031 User::Leave(KErrNotSupported); |
|
2032 } |
|
2033 return 0; |
|
2034 } |
|
2035 |
|
2036 |
|
2037 |
|
2038 /****************************************************************************** |
|
2039 * |
|
2040 ******************************************************************************/ |
|
2041 |
|
2042 void RunBenchmarkL(CTest::SStats& aB, STestThreadDesc* aT, TInt aLength) |
|
2043 { |
|
2044 const TInt NC = TCpuUsage::N(); |
|
2045 CTest* p; |
|
2046 TUint32 saved_aff = aT->iCpuAffinity; |
|
2047 aT->iCpuAffinity = NC-1; |
|
2048 p = CTest::NewL(aLength, 1, 1, aT); |
|
2049 TInt r = p->Execute(); |
|
2050 test_KErrNone(r); |
|
2051 p->PrintResults(); |
|
2052 p->GetStats(aB); |
|
2053 delete p; |
|
2054 aT->iCpuAffinity = saved_aff; |
|
2055 } |
|
2056 |
|
2057 void CompareToBenchmark(const CTest::SStats& aS, const CTest::SStats& aB) |
|
2058 { |
|
2059 TReal bCpu = (TReal)aB.iTotalCpu; |
|
2060 TReal bWork = (TReal)aB.iTotalWork; |
|
2061 TReal bEff = bWork/bCpu*1000000.0; |
|
2062 TReal tCpu = (TReal)aS.iTotalCpu; |
|
2063 TReal tWork = (TReal)aS.iTotalWork; |
|
2064 TReal tEff = tWork/tCpu*1000000.0; |
|
2065 TReal mCpu = (TReal)aS.iMinCpu; |
|
2066 TReal MCpu = (TReal)aS.iMaxCpu; |
|
2067 TReal mWork = (TReal)aS.iMinWork; |
|
2068 TReal MWork = (TReal)aS.iMaxWork; |
|
2069 test.Printf(_L("Total CPU usage %6.1f%% of benchmark\n"), 100.0*tCpu/bCpu); |
|
2070 test.Printf(_L("Total work done %6.1f%% of benchmark\n"), 100.0*tWork/bWork); |
|
2071 test.Printf(_L("Max/min ratio %6.1f%% (CPU) %6.1f%% (Work)\n"), 100.0*MCpu/mCpu, 100.0*MWork/mWork); |
|
2072 test.Printf(_L("Work/sec bench: %10.1f test: %10.1f Relative Efficiency %6.1f%%\n"), bEff, tEff, tEff/bEff*100.0); |
|
2073 } |
|
2074 |
|
2075 void ContinuousTestL(TInt aLength, TUint32 aWhich) |
|
2076 { |
|
2077 aLength *= 1000; |
|
2078 const TInt NC = TCpuUsage::N(); |
|
2079 TInt r = 0; |
|
2080 TInt i = 0; |
|
2081 CTest::SStats benchmark; |
|
2082 CTest::SStats st; |
|
2083 CTest::SStats stm; |
|
2084 CTest* p = 0; |
|
2085 TUint et = aWhich >> 28; |
|
2086 TBool separate = (aWhich & 0x08000000u); |
|
2087 TInt instance = 0; |
|
2088 STestThreadDesc* td[2*TCpuUsage::EMaxCpus] = {0}; |
|
2089 STestThreadDesc* tdm[TCpuUsage::EMaxCpus] = {0}; |
|
2090 STestThreadDesc* tdl[TCpuUsage::EMaxCpus] = {0}; |
|
2091 for (i=0; i<2*NC; ++i) |
|
2092 { |
|
2093 td[i] = STestThreadDesc::ContinuousLC(); |
|
2094 td[i]->iEaterType = (TUint16)et; |
|
2095 td[i]->iEaterInstance = (TUint16)(separate ? (instance++) : 0); |
|
2096 if (i<NC) |
|
2097 { |
|
2098 tdm[i] = STestThreadDesc::ContinuousLC(EPriorityMore); |
|
2099 tdm[i]->iEaterType = (TUint16)et; |
|
2100 tdm[i]->iEaterInstance = (TUint16)(separate ? (instance++) : 0); |
|
2101 tdl[i] = STestThreadDesc::ContinuousLC(); |
|
2102 tdl[i]->iCpuAffinity = i; |
|
2103 tdl[i]->iEaterType = (TUint16)et; |
|
2104 tdl[i]->iEaterInstance = (TUint16)(separate ? (instance++) : 0); |
|
2105 } |
|
2106 } |
|
2107 |
|
2108 test.Printf(_L("\nTesting a single continuous CPU-locked thread\n")); |
|
2109 RunBenchmarkL(benchmark, tdl[NC-1], aLength); |
|
2110 |
|
2111 TInt n; |
|
2112 |
|
2113 if (aWhich & 1) |
|
2114 { |
|
2115 for (n=1; n<=2*NC; ++n) |
|
2116 { |
|
2117 test.Printf(_L("\nTesting %d continuous thread(s) ...\n"), n); |
|
2118 p = CTest::NewL(aLength, 1, -n, td); |
|
2119 r = p->Execute(); |
|
2120 test_KErrNone(r); |
|
2121 p->PrintResults(); |
|
2122 p->GetStats(st); |
|
2123 delete p; |
|
2124 CompareToBenchmark(st, benchmark); |
|
2125 } |
|
2126 } |
|
2127 |
|
2128 TInt h; |
|
2129 if (aWhich & 2) |
|
2130 { |
|
2131 for (h=1; h<NC; ++h) |
|
2132 { |
|
2133 for (n=h; n<=2*NC; ++n) |
|
2134 { |
|
2135 TInt l = n - h; |
|
2136 test.Printf(_L("\nTesting %d continuous thread(s) (%d higher priority) CPU-locked...\n"), n, h); |
|
2137 p = CTest::NewL(aLength, 2, -h, tdl, l, tdl[h]); |
|
2138 r = p->Execute(); |
|
2139 test_KErrNone(r); |
|
2140 p->PrintResults(); |
|
2141 p->GetStats(st, h, l); |
|
2142 p->GetStats(stm, 0, h); |
|
2143 delete p; |
|
2144 CompareToBenchmark(stm, benchmark); |
|
2145 if (l>0) |
|
2146 CompareToBenchmark(st, benchmark); |
|
2147 } |
|
2148 } |
|
2149 } |
|
2150 |
|
2151 if (aWhich & 4) |
|
2152 { |
|
2153 for (h=1; h<NC; ++h) |
|
2154 { |
|
2155 for (n=h; n<=2*NC; ++n) |
|
2156 { |
|
2157 TInt l = n - h; |
|
2158 test.Printf(_L("\nTesting %d continuous thread(s) (%d higher priority)...\n"), n, h); |
|
2159 p = CTest::NewL(aLength, 2, -h, tdm, -l, td); |
|
2160 r = p->Execute(); |
|
2161 test_KErrNone(r); |
|
2162 p->PrintResults(); |
|
2163 p->GetStats(st, h, l); |
|
2164 p->GetStats(stm, 0, h); |
|
2165 delete p; |
|
2166 CompareToBenchmark(stm, benchmark); |
|
2167 if (l>0) |
|
2168 CompareToBenchmark(st, benchmark); |
|
2169 } |
|
2170 } |
|
2171 } |
|
2172 |
|
2173 CleanupStack::PopAndDestroy(NC*4); |
|
2174 } |
|
2175 |
|
2176 |
|
2177 void TestWithOneSpecialL(const TDesC& aTitle, TInt aLength, const CTest::SStats& aB1, const CTest::SStats& aB0, STestThreadDesc* aT1, STestThreadDesc* aT0) |
|
2178 { |
|
2179 const TInt NC = TCpuUsage::N(); |
|
2180 CTest::SStats st; |
|
2181 CTest::SStats sti; |
|
2182 CTest* p = 0; |
|
2183 TInt n; |
|
2184 TInt r; |
|
2185 for (n=1; n<=2*NC-1; ++n) |
|
2186 { |
|
2187 test.Printf(_L("\nTesting %d continuous thread(s) plus %S ...\n"), n, &aTitle); |
|
2188 p = CTest::NewL(aLength, 2, 1, aT1, n, aT0); |
|
2189 r = p->Execute(); |
|
2190 test_KErrNone(r); |
|
2191 p->PrintResults(); |
|
2192 p->GetStats(st, 1, n); |
|
2193 p->GetStats(sti, 0, 1); |
|
2194 delete p; |
|
2195 CompareToBenchmark(sti, aB1); |
|
2196 CompareToBenchmark(st, aB0); |
|
2197 |
|
2198 test.Printf(_L("\nTesting %d continuous thread(s) plus %Sh ...\n"), n, &aTitle); |
|
2199 TInt orig_pri = aT1->iPriority; |
|
2200 aT1->iPriority = EPriorityMore; |
|
2201 p = CTest::NewL(aLength, 2, 1, aT1, n, aT0); |
|
2202 r = p->Execute(); |
|
2203 test_KErrNone(r); |
|
2204 p->PrintResults(); |
|
2205 p->GetStats(st, 1, n); |
|
2206 p->GetStats(sti, 0, 1); |
|
2207 delete p; |
|
2208 CompareToBenchmark(sti, aB1); |
|
2209 CompareToBenchmark(st, aB0); |
|
2210 aT1->iPriority = orig_pri; |
|
2211 } |
|
2212 } |
|
2213 |
|
2214 void ContinuousPlusIntermittentTestL(TInt aLength, TUint32 aWhich) |
|
2215 { |
|
2216 aLength *= 1000; |
|
2217 const TInt NC = TCpuUsage::N(); |
|
2218 TInt i = 0; |
|
2219 CTest::SStats bmc, bmilc, bmilf, bmihc, bmihf; |
|
2220 STestThreadDesc* td = STestThreadDesc::ContinuousLC(); |
|
2221 STestThreadDesc* tdl[TCpuUsage::EMaxCpus] = {0}; |
|
2222 STestThreadDesc* tdilc[TCpuUsage::EMaxCpus] = {0}; // light load, coarse grained |
|
2223 STestThreadDesc* tdilf[TCpuUsage::EMaxCpus] = {0}; // light load, fine grained |
|
2224 STestThreadDesc* tdihc[TCpuUsage::EMaxCpus] = {0}; // heavy load, coarse grained |
|
2225 STestThreadDesc* tdihf[TCpuUsage::EMaxCpus] = {0}; // heavy load, fine grained |
|
2226 for (i=0; i<NC; ++i) |
|
2227 { |
|
2228 tdl[i] = STestThreadDesc::ContinuousLC(); |
|
2229 tdl[i]->iCpuAffinity = i; |
|
2230 tdilc[i] = STestThreadDesc::StaccatoLC(45000, 500000); |
|
2231 tdilf[i] = STestThreadDesc::StaccatoLC(1000, 50000); |
|
2232 tdihc[i] = STestThreadDesc::StaccatoLC(400000, 500000); |
|
2233 tdihf[i] = STestThreadDesc::StaccatoLC(3000, 5000); |
|
2234 } |
|
2235 |
|
2236 test.Printf(_L("\nTesting a single continuous CPU-locked thread\n")); |
|
2237 RunBenchmarkL(bmc, tdl[NC-1], aLength); |
|
2238 |
|
2239 if (aWhich & 1) |
|
2240 { |
|
2241 test.Printf(_L("\nTesting a single ILC CPU-locked thread\n")); |
|
2242 RunBenchmarkL(bmilc, tdilc[NC-1], aLength); |
|
2243 } |
|
2244 |
|
2245 if (aWhich & 2) |
|
2246 { |
|
2247 test.Printf(_L("\nTesting a single ILF CPU-locked thread\n")); |
|
2248 RunBenchmarkL(bmilf, tdilf[NC-1], aLength); |
|
2249 } |
|
2250 |
|
2251 if (aWhich & 4) |
|
2252 { |
|
2253 test.Printf(_L("\nTesting a single IHC CPU-locked thread\n")); |
|
2254 RunBenchmarkL(bmihc, tdihc[NC-1], aLength); |
|
2255 } |
|
2256 |
|
2257 if (aWhich & 8) |
|
2258 { |
|
2259 test.Printf(_L("\nTesting a single IHF CPU-locked thread\n")); |
|
2260 RunBenchmarkL(bmihf, tdihf[NC-1], aLength); |
|
2261 } |
|
2262 |
|
2263 if (aWhich & 1) |
|
2264 { |
|
2265 TestWithOneSpecialL(_L("ILC"), aLength, bmilc, bmc, tdilc[0], td); |
|
2266 } |
|
2267 if (aWhich & 2) |
|
2268 { |
|
2269 TestWithOneSpecialL(_L("ILF"), aLength, bmilf, bmc, tdilf[0], td); |
|
2270 } |
|
2271 if (aWhich & 4) |
|
2272 { |
|
2273 TestWithOneSpecialL(_L("IHC"), aLength, bmihc, bmc, tdihc[0], td); |
|
2274 } |
|
2275 if (aWhich & 8) |
|
2276 { |
|
2277 TestWithOneSpecialL(_L("IHF"), aLength, bmihf, bmc, tdihf[0], td); |
|
2278 } |
|
2279 CleanupStack::PopAndDestroy(5*NC+1); |
|
2280 } |
|
2281 |
|
2282 |
|
2283 TInt E32Main() |
|
2284 { |
|
2285 RThread().SetPriority(EPriorityAbsoluteHigh); |
|
2286 test.Title(); |
|
2287 User::SetCritical(User::ESystemCritical); |
|
2288 TCpuUsage::Init(); |
|
2289 TInt r = 0; |
|
2290 |
|
2291 CTrapCleanup* cln = CTrapCleanup::New(); |
|
2292 test_NotNull(cln); |
|
2293 CActiveScheduler* as = new CActiveScheduler; |
|
2294 test_NotNull(as); |
|
2295 CActiveScheduler::Install(as); |
|
2296 |
|
2297 test.Printf(_L("\n************************************************************************\n")); |
|
2298 test.Printf(_L("* Testing with CPU intensive loads...\n")); |
|
2299 test.Printf(_L("************************************************************************\n")); |
|
2300 TRAP(r, ContinuousTestL(3000, 1+4)); |
|
2301 test_KErrNone(r); |
|
2302 TRAP(r, ContinuousTestL(10000, 1+4)); |
|
2303 test_KErrNone(r); |
|
2304 TRAP(r, ContinuousPlusIntermittentTestL(10000, 15)); |
|
2305 test_KErrNone(r); |
|
2306 |
|
2307 test.Printf(_L("\n************************************************************************\n")); |
|
2308 test.Printf(_L("* Testing with memory intensive loads, good locality...\n")); |
|
2309 test.Printf(_L("************************************************************************\n")); |
|
2310 TRAP(r, ContinuousTestL(3000, 1+4+0x08000000u+(EEaterMemoryLocalU<<28))); |
|
2311 test_KErrNone(r); |
|
2312 TRAP(r, ContinuousTestL(10000, 1+4+0x08000000u+(EEaterMemoryLocalU<<28))); |
|
2313 test_KErrNone(r); |
|
2314 |
|
2315 test.Printf(_L("\n************************************************************************\n")); |
|
2316 test.Printf(_L("* Testing with memory intensive loads, poor locality...\n")); |
|
2317 test.Printf(_L("************************************************************************\n")); |
|
2318 TRAP(r, ContinuousTestL(3000, 1+4+0x08000000u+(EEaterMemoryNonLocalU<<28))); |
|
2319 test_KErrNone(r); |
|
2320 TRAP(r, ContinuousTestL(10000, 1+4+0x08000000u+(EEaterMemoryNonLocalU<<28))); |
|
2321 test_KErrNone(r); |
|
2322 |
|
2323 test.Printf(_L("\n************************************************************************\n")); |
|
2324 test.Printf(_L("* Testing with memory intensive loads, atomic operations...\n")); |
|
2325 test.Printf(_L("************************************************************************\n")); |
|
2326 TRAP(r, ContinuousTestL(3000, 1+4+(EEaterMemoryAtomic<<28))); |
|
2327 test_KErrNone(r); |
|
2328 TRAP(r, ContinuousTestL(10000, 1+4+(EEaterMemoryAtomic<<28))); |
|
2329 test_KErrNone(r); |
|
2330 |
|
2331 test.Printf(_L("\n************************************************************************\n")); |
|
2332 test.Printf(_L("* Testing with memory intensive loads, atomic operations 2...\n")); |
|
2333 test.Printf(_L("************************************************************************\n")); |
|
2334 TRAP(r, ContinuousTestL(3000, 1+4+(EEaterMemoryAtomic2<<28))); |
|
2335 test_KErrNone(r); |
|
2336 TRAP(r, ContinuousTestL(10000, 1+4+(EEaterMemoryAtomic2<<28))); |
|
2337 test_KErrNone(r); |
|
2338 |
|
2339 test.Printf(_L("\n************************************************************************\n")); |
|
2340 test.Printf(_L("* Testing with CPU intensive loads with some serialization...\n")); |
|
2341 test.Printf(_L("************************************************************************\n")); |
|
2342 TRAP(r, ContinuousTestL(3000, 1+4+(EEaterAmdahl<<28))); |
|
2343 test_KErrNone(r); |
|
2344 TRAP(r, ContinuousTestL(10000, 1+4+(EEaterAmdahl<<28))); |
|
2345 test_KErrNone(r); |
|
2346 |
|
2347 delete as; |
|
2348 delete cln; |
|
2349 return r; |
|
2350 } |
|
2351 |