kerneltest/e32utils/nistsecurerng/src/math/erf.cpp
branchRCL_3
changeset 43 c1f20ce4abcf
equal deleted inserted replaced
42:a179b74831c9 43:c1f20ce4abcf
       
     1 /*
       
     2 * Portions Copyright (c) 2006, 2009 Nokia Corporation and/or its subsidiary(-ies).
       
     3 * All rights reserved.
       
     4 * This component and the accompanying materials are made available
       
     5 * under the terms of "Eclipse Public License v1.0"
       
     6 * which accompanies this distribution, and is available
       
     7 * at the URL "http://www.eclipse.org/legal/epl-v10.html".
       
     8 *
       
     9 * Initial Contributors:
       
    10 * Nokia Corporation - initial contribution.
       
    11 *
       
    12 * Contributors:
       
    13 *
       
    14 * Description: 
       
    15 */
       
    16 
       
    17 /* @(#)s_erf.c 5.1 93/09/24 */
       
    18 /*
       
    19  * ====================================================
       
    20  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
       
    21  *
       
    22  * Developed at SunPro, a Sun Microsystems, Inc. business.
       
    23  * Permission to use, copy, modify, and distribute this
       
    24  * software is freely granted, provided that this notice
       
    25  * is preserved.
       
    26  * ====================================================
       
    27  */
       
    28 #ifndef __SYMBIAN32__
       
    29 #ifndef lint
       
    30 static char rcsid[] = "$FreeBSD: src/lib/msun/src/s_erf.c,v 1.7 2002/05/28 18:15:04 alfred Exp $";
       
    31 #endif
       
    32 #endif //__SYMBIAN32__
       
    33 
       
    34 #include <e32std.h>
       
    35 
       
    36 #include "openc.h"
       
    37 
       
    38 /* double erf(double x)
       
    39  * double erfc(double x)
       
    40  *               x
       
    41  *            2      |\
       
    42  *     erf(x)  =  ---------  | exp(-t*t)dt
       
    43  *         sqrt(pi) \|
       
    44  *               0
       
    45  *
       
    46  *     erfc(x) =  1-erf(x)
       
    47  *  Note that
       
    48  *      erf(-x) = -erf(x)
       
    49  *      erfc(-x) = 2 - erfc(x)
       
    50  *
       
    51  * Method:
       
    52  *  1. For |x| in [0, 0.84375]
       
    53  *      erf(x)  = x + x*R(x^2)
       
    54  *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
       
    55  *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
       
    56  *     where R = P/Q where P is an odd poly of degree 8 and
       
    57  *     Q is an odd poly of degree 10.
       
    58  *                       -57.90
       
    59  *          | R - (erf(x)-x)/x | <= 2
       
    60  *
       
    61  *
       
    62  *     Remark. The formula is derived by noting
       
    63  *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
       
    64  *     and that
       
    65  *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
       
    66  *     is close to one. The interval is chosen because the fix
       
    67  *     point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
       
    68  *     near 0.6174), and by some experiment, 0.84375 is chosen to
       
    69  *     guarantee the error is less than one ulp for erf.
       
    70  *
       
    71  *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
       
    72  *         c = 0.84506291151 rounded to single (24 bits)
       
    73  *          erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
       
    74  *          erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
       
    75  *            1+(c+P1(s)/Q1(s))    if x < 0
       
    76  *          |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
       
    77  *     Remark: here we use the taylor series expansion at x=1.
       
    78  *      erf(1+s) = erf(1) + s*Poly(s)
       
    79  *           = 0.845.. + P1(s)/Q1(s)
       
    80  *     That is, we use rational approximation to approximate
       
    81  *          erf(1+s) - (c = (single)0.84506291151)
       
    82  *     Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
       
    83  *     where
       
    84  *      P1(s) = degree 6 poly in s
       
    85  *      Q1(s) = degree 6 poly in s
       
    86  *
       
    87  *      3. For x in [1.25,1/0.35(~2.857143)],
       
    88  *          erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
       
    89  *          erf(x)  = 1 - erfc(x)
       
    90  *     where
       
    91  *      R1(z) = degree 7 poly in z, (z=1/x^2)
       
    92  *      S1(z) = degree 8 poly in z
       
    93  *
       
    94  *      4. For x in [1/0.35,28]
       
    95  *          erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
       
    96  *          = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
       
    97  *          = 2.0 - tiny        (if x <= -6)
       
    98  *          erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
       
    99  *          erf(x)  = sign(x)*(1.0 - tiny)
       
   100  *     where
       
   101  *      R2(z) = degree 6 poly in z, (z=1/x^2)
       
   102  *      S2(z) = degree 7 poly in z
       
   103  *
       
   104  *      Note1:
       
   105  *     To compute exp(-x*x-0.5625+R/S), let s be a single
       
   106  *     precision number and s := x; then
       
   107  *      -x*x = -s*s + (s-x)*(s+x)
       
   108  *          exp(-x*x-0.5626+R/S) =
       
   109  *          exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
       
   110  *      Note2:
       
   111  *     Here 4 and 5 make use of the asymptotic series
       
   112  *            exp(-x*x)
       
   113  *      erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
       
   114  *            x*sqrt(pi)
       
   115  *     We use rational approximation to approximate
       
   116  *          g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
       
   117  *     Here is the error bound for R1/S1 and R2/S2
       
   118  *          |R1/S1 - f(x)|  < 2**(-62.57)
       
   119  *          |R2/S2 - f(x)|  < 2**(-61.52)
       
   120  *
       
   121  *      5. For inf > x >= 28
       
   122  *          erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
       
   123  *          erfc(x) = tiny*tiny (raise underflow) if x > 0
       
   124  *          = 2 - tiny if x<0
       
   125  *
       
   126  *      7. Special case:
       
   127  *          erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
       
   128  *          erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
       
   129  *      erfc/erf(NaN) is NaN
       
   130  */
       
   131 
       
   132 
       
   133 
       
   134 
       
   135 
       
   136 ////--------------------------------------------------
       
   137 
       
   138 #define __ieee754_exp   exp
       
   139 typedef TUint32 u_int32_t;
       
   140 typedef TInt32 int32_t;
       
   141 
       
   142 typedef union
       
   143     {
       
   144     double value;
       
   145     struct
       
   146         {
       
   147         u_int32_t lsw;
       
   148         u_int32_t msw;
       
   149         } parts;
       
   150     } ieee_double_shape_type;
       
   151 
       
   152 
       
   153 inline void GET_HIGH_WORD(int32_t& aHighWord, double aValue)
       
   154     {
       
   155     ieee_double_shape_type gh_u;
       
   156     gh_u.value = aValue;
       
   157     aHighWord = gh_u.parts.msw;                  
       
   158     }
       
   159     
       
   160 inline void SET_LOW_WORD(double& aValue, int32_t aLowWord)
       
   161     {
       
   162     ieee_double_shape_type sl_u;
       
   163     sl_u.value = aValue;
       
   164     sl_u.parts.lsw = aLowWord;
       
   165     aValue = sl_u.value;
       
   166     }
       
   167 
       
   168 //----------------------------------------------------------------math_private.h
       
   169 
       
   170 static const double tiny    = 1e-300;
       
   171 static const double tinySquare    = 0.00; // tiny * tiny 
       
   172 static const double half    = 5.00000000000000000000e-01; /* 0x3FE00000, 0x00000000 */
       
   173 static const double one     = 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
       
   174 static const double two     = 2.00000000000000000000e+00; /* 0x40000000, 0x00000000 */
       
   175     /* c = (float)0.84506291151 */
       
   176 static const double erx     = 8.45062911510467529297e-01; /* 0x3FEB0AC1, 0x60000000 */
       
   177 /*
       
   178  * Coefficients for approximation to  erf on [0,0.84375]
       
   179  */
       
   180 static const double efx     =  1.28379167095512586316e-01; /* 0x3FC06EBA, 0x8214DB69 */
       
   181 static const double efx8    =  1.02703333676410069053e+00; /* 0x3FF06EBA, 0x8214DB69 */
       
   182 static const double pp0     =  1.28379167095512558561e-01; /* 0x3FC06EBA, 0x8214DB68 */
       
   183 static const double pp1     = -3.25042107247001499370e-01; /* 0xBFD4CD7D, 0x691CB913 */
       
   184 static const double pp2     = -2.84817495755985104766e-02; /* 0xBF9D2A51, 0xDBD7194F */
       
   185 static const double pp3     = -5.77027029648944159157e-03; /* 0xBF77A291, 0x236668E4 */
       
   186 static const double pp4     = -2.37630166566501626084e-05; /* 0xBEF8EAD6, 0x120016AC */
       
   187 static const double qq1     =  3.97917223959155352819e-01; /* 0x3FD97779, 0xCDDADC09 */
       
   188 static const double qq2     =  6.50222499887672944485e-02; /* 0x3FB0A54C, 0x5536CEBA */
       
   189 static const double qq3     =  5.08130628187576562776e-03; /* 0x3F74D022, 0xC4D36B0F */
       
   190 static const double qq4     =  1.32494738004321644526e-04; /* 0x3F215DC9, 0x221C1A10 */
       
   191 static const double qq5     = -3.96022827877536812320e-06; /* 0xBED09C43, 0x42A26120 */
       
   192 /*
       
   193  * Coefficients for approximation to  erf  in [0.84375,1.25]
       
   194  */
       
   195 static const double pa0     = -2.36211856075265944077e-03; /* 0xBF6359B8, 0xBEF77538 */
       
   196 static const double pa1     =  4.14856118683748331666e-01; /* 0x3FDA8D00, 0xAD92B34D */
       
   197 static const double pa2     = -3.72207876035701323847e-01; /* 0xBFD7D240, 0xFBB8C3F1 */
       
   198 static const double pa3     =  3.18346619901161753674e-01; /* 0x3FD45FCA, 0x805120E4 */
       
   199 static const double pa4     = -1.10894694282396677476e-01; /* 0xBFBC6398, 0x3D3E28EC */
       
   200 static const double pa5     =  3.54783043256182359371e-02; /* 0x3FA22A36, 0x599795EB */
       
   201 static const double pa6     = -2.16637559486879084300e-03; /* 0xBF61BF38, 0x0A96073F */
       
   202 static const double qa1     =  1.06420880400844228286e-01; /* 0x3FBB3E66, 0x18EEE323 */
       
   203 static const double qa2     =  5.40397917702171048937e-01; /* 0x3FE14AF0, 0x92EB6F33 */
       
   204 static const double qa3     =  7.18286544141962662868e-02; /* 0x3FB2635C, 0xD99FE9A7 */
       
   205 static const double qa4     =  1.26171219808761642112e-01; /* 0x3FC02660, 0xE763351F */
       
   206 static const double qa5     =  1.36370839120290507362e-02; /* 0x3F8BEDC2, 0x6B51DD1C */
       
   207 static const double qa6     =  1.19844998467991074170e-02; /* 0x3F888B54, 0x5735151D */
       
   208 /*
       
   209  * Coefficients for approximation to  erfc in [1.25,1/0.35]
       
   210  */
       
   211 static const double ra0     = -9.86494403484714822705e-03; /* 0xBF843412, 0x600D6435 */
       
   212 static const double ra1     = -6.93858572707181764372e-01; /* 0xBFE63416, 0xE4BA7360 */
       
   213 static const double ra2     = -1.05586262253232909814e+01; /* 0xC0251E04, 0x41B0E726 */
       
   214 static const double ra3     = -6.23753324503260060396e+01; /* 0xC04F300A, 0xE4CBA38D */
       
   215 static const double ra4     = -1.62396669462573470355e+02; /* 0xC0644CB1, 0x84282266 */
       
   216 static const double ra5     = -1.84605092906711035994e+02; /* 0xC067135C, 0xEBCCABB2 */
       
   217 static const double ra6     = -8.12874355063065934246e+01; /* 0xC0545265, 0x57E4D2F2 */
       
   218 static const double ra7     = -9.81432934416914548592e+00; /* 0xC023A0EF, 0xC69AC25C */
       
   219 static const double sa1     =  1.96512716674392571292e+01; /* 0x4033A6B9, 0xBD707687 */
       
   220 static const double sa2     =  1.37657754143519042600e+02; /* 0x4061350C, 0x526AE721 */
       
   221 static const double sa3     =  4.34565877475229228821e+02; /* 0x407B290D, 0xD58A1A71 */
       
   222 static const double sa4     =  6.45387271733267880336e+02; /* 0x40842B19, 0x21EC2868 */
       
   223 static const double sa5     =  4.29008140027567833386e+02; /* 0x407AD021, 0x57700314 */
       
   224 static const double sa6     =  1.08635005541779435134e+02; /* 0x405B28A3, 0xEE48AE2C */
       
   225 static const double sa7     =  6.57024977031928170135e+00; /* 0x401A47EF, 0x8E484A93 */
       
   226 static const double sa8     = -6.04244152148580987438e-02; /* 0xBFAEEFF2, 0xEE749A62 */
       
   227 /*
       
   228  * Coefficients for approximation to  erfc in [1/.35,28]
       
   229  */
       
   230 static const double rb0     = -9.86494292470009928597e-03; /* 0xBF843412, 0x39E86F4A */
       
   231 static const double rb1     = -7.99283237680523006574e-01; /* 0xBFE993BA, 0x70C285DE */
       
   232 static const double rb2     = -1.77579549177547519889e+01; /* 0xC031C209, 0x555F995A */
       
   233 static const double rb3     = -1.60636384855821916062e+02; /* 0xC064145D, 0x43C5ED98 */
       
   234 static const double rb4     = -6.37566443368389627722e+02; /* 0xC083EC88, 0x1375F228 */
       
   235 static const double rb5     = -1.02509513161107724954e+03; /* 0xC0900461, 0x6A2E5992 */
       
   236 static const double rb6     = -4.83519191608651397019e+02; /* 0xC07E384E, 0x9BDC383F */
       
   237 static const double sb1     =  3.03380607434824582924e+01; /* 0x403E568B, 0x261D5190 */
       
   238 static const double sb2     =  3.25792512996573918826e+02; /* 0x40745CAE, 0x221B9F0A */
       
   239 static const double sb3     =  1.53672958608443695994e+03; /* 0x409802EB, 0x189D5118 */
       
   240 static const double sb4     =  3.19985821950859553908e+03; /* 0x40A8FFB7, 0x688C246A */
       
   241 static const double sb5     =  2.55305040643316442583e+03; /* 0x40A3F219, 0xCEDF3BE6 */
       
   242 static const double sb6     =  4.74528541206955367215e+02; /* 0x407DA874, 0xE79FE763 */
       
   243 static const double sb7     = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
       
   244 
       
   245 double erf(double x)
       
   246 {
       
   247     TInt32 hx,ix,i;
       
   248     double R,S,P,Q,s,y,z,r;
       
   249     GET_HIGH_WORD(hx,x);
       
   250     ix = hx&0x7fffffff;
       
   251     if(ix>=0x7ff00000) {        /* erf(nan)=nan */
       
   252         i = ((TUint32)hx>>31)<<1;
       
   253         return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */
       
   254     }
       
   255 
       
   256     if(ix < 0x3feb0000) {       /* |x|<0.84375 */
       
   257         if(ix < 0x3e300000) {   /* |x|<2**-28 */
       
   258             if (ix < 0x00800000)
       
   259             return 0.125*(8.0*x+efx8*x);  /*avoid underflow */
       
   260         return x + efx*x;
       
   261         }
       
   262         z = x*x;
       
   263         r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
       
   264         s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
       
   265         y = r/s;
       
   266         return x + x*y;
       
   267     }
       
   268     if(ix < 0x3ff40000) {       /* 0.84375 <= |x| < 1.25 */
       
   269         s = fabs(x)-one;
       
   270         P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
       
   271         Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
       
   272         if(hx>=0) return erx + P/Q; else return -erx - P/Q;
       
   273     }
       
   274     if (ix >= 0x40180000) {     /* inf>|x|>=6 */
       
   275         if(hx>=0) return one-tiny; else return tiny-one;
       
   276     }
       
   277     x = fabs(x);
       
   278     s = one/(x*x);
       
   279     if(ix< 0x4006DB6E) {    /* |x| < 1/0.35 */
       
   280         R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
       
   281                 ra5+s*(ra6+s*ra7))))));
       
   282         S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
       
   283                 sa5+s*(sa6+s*(sa7+s*sa8)))))));
       
   284     } else {    /* |x| >= 1/0.35 */
       
   285         R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
       
   286                 rb5+s*rb6)))));
       
   287         S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
       
   288                 sb5+s*(sb6+s*sb7))))));
       
   289     }
       
   290     z  = x;
       
   291     SET_LOW_WORD(z,0);
       
   292     r  =  __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S);
       
   293     if(hx>=0) return one-r/x; else return  r/x-one;
       
   294 }
       
   295 
       
   296 double erfc(double x)
       
   297 {
       
   298     int32_t hx,ix;
       
   299     double R,S,P,Q,s,y,z,r;
       
   300     GET_HIGH_WORD(hx,x);
       
   301     ix = hx&0x7fffffff;
       
   302     if(ix>=0x7ff00000) {            /* erfc(nan)=nan */
       
   303                         /* erfc(+-inf)=0,2 */
       
   304         return (double)(((u_int32_t)hx>>31)<<1)+one/x;
       
   305     }
       
   306 
       
   307     if(ix < 0x3feb0000) {       /* |x|<0.84375 */
       
   308         if(ix < 0x3c700000)     /* |x|<2**-56 */
       
   309         return one-x;
       
   310         z = x*x;
       
   311         r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
       
   312         s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
       
   313         y = r/s;
       
   314         if(hx < 0x3fd00000) {   /* x<1/4 */
       
   315         return one-(x+x*y);
       
   316         } else {
       
   317         r = x*y;
       
   318         r += (x-half);
       
   319             return half - r ;
       
   320         }
       
   321     }
       
   322     if(ix < 0x3ff40000) {       /* 0.84375 <= |x| < 1.25 */
       
   323         s = fabs(x)-one;
       
   324         P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
       
   325         Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
       
   326         if(hx>=0) {
       
   327             z  = one-erx; return z - P/Q;
       
   328         } else {
       
   329         z = erx+P/Q; return one+z;
       
   330         }
       
   331     }
       
   332     if (ix < 0x403c0000) {      /* |x|<28 */
       
   333         x = fabs(x);
       
   334         s = one/(x*x);
       
   335         if(ix< 0x4006DB6D) {    /* |x| < 1/.35 ~ 2.857143*/
       
   336             R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
       
   337                 ra5+s*(ra6+s*ra7))))));
       
   338             S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
       
   339                 sa5+s*(sa6+s*(sa7+s*sa8)))))));
       
   340         } else {            /* |x| >= 1/.35 ~ 2.857143 */
       
   341         if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
       
   342             R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
       
   343                 rb5+s*rb6)))));
       
   344             S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
       
   345                 sb5+s*(sb6+s*sb7))))));
       
   346         }
       
   347         z  = x;
       
   348         SET_LOW_WORD(z,0);
       
   349         r  =  __ieee754_exp(-z*z-0.5625)*
       
   350             __ieee754_exp((z-x)*(z+x)+R/S);
       
   351         if(hx>0) return r/x; else return two-r/x;
       
   352     } else {
       
   353         if(hx>0) return tinySquare; else return two-tiny;
       
   354     }
       
   355 }