kerneltest/e32utils/nistsecurerng/src/math/erf.cpp
branchRCL_3
changeset 43 c1f20ce4abcf
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/kerneltest/e32utils/nistsecurerng/src/math/erf.cpp	Tue Aug 31 16:34:26 2010 +0300
@@ -0,0 +1,355 @@
+/*
+* Portions Copyright (c) 2006, 2009 Nokia Corporation and/or its subsidiary(-ies).
+* All rights reserved.
+* This component and the accompanying materials are made available
+* under the terms of "Eclipse Public License v1.0"
+* which accompanies this distribution, and is available
+* at the URL "http://www.eclipse.org/legal/epl-v10.html".
+*
+* Initial Contributors:
+* Nokia Corporation - initial contribution.
+*
+* Contributors:
+*
+* Description: 
+*/
+
+/* @(#)s_erf.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+#ifndef __SYMBIAN32__
+#ifndef lint
+static char rcsid[] = "$FreeBSD: src/lib/msun/src/s_erf.c,v 1.7 2002/05/28 18:15:04 alfred Exp $";
+#endif
+#endif //__SYMBIAN32__
+
+#include <e32std.h>
+
+#include "openc.h"
+
+/* double erf(double x)
+ * double erfc(double x)
+ *               x
+ *            2      |\
+ *     erf(x)  =  ---------  | exp(-t*t)dt
+ *         sqrt(pi) \|
+ *               0
+ *
+ *     erfc(x) =  1-erf(x)
+ *  Note that
+ *      erf(-x) = -erf(x)
+ *      erfc(-x) = 2 - erfc(x)
+ *
+ * Method:
+ *  1. For |x| in [0, 0.84375]
+ *      erf(x)  = x + x*R(x^2)
+ *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
+ *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
+ *     where R = P/Q where P is an odd poly of degree 8 and
+ *     Q is an odd poly of degree 10.
+ *                       -57.90
+ *          | R - (erf(x)-x)/x | <= 2
+ *
+ *
+ *     Remark. The formula is derived by noting
+ *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
+ *     and that
+ *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
+ *     is close to one. The interval is chosen because the fix
+ *     point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
+ *     near 0.6174), and by some experiment, 0.84375 is chosen to
+ *     guarantee the error is less than one ulp for erf.
+ *
+ *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
+ *         c = 0.84506291151 rounded to single (24 bits)
+ *          erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
+ *          erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
+ *            1+(c+P1(s)/Q1(s))    if x < 0
+ *          |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
+ *     Remark: here we use the taylor series expansion at x=1.
+ *      erf(1+s) = erf(1) + s*Poly(s)
+ *           = 0.845.. + P1(s)/Q1(s)
+ *     That is, we use rational approximation to approximate
+ *          erf(1+s) - (c = (single)0.84506291151)
+ *     Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
+ *     where
+ *      P1(s) = degree 6 poly in s
+ *      Q1(s) = degree 6 poly in s
+ *
+ *      3. For x in [1.25,1/0.35(~2.857143)],
+ *          erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
+ *          erf(x)  = 1 - erfc(x)
+ *     where
+ *      R1(z) = degree 7 poly in z, (z=1/x^2)
+ *      S1(z) = degree 8 poly in z
+ *
+ *      4. For x in [1/0.35,28]
+ *          erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
+ *          = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
+ *          = 2.0 - tiny        (if x <= -6)
+ *          erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
+ *          erf(x)  = sign(x)*(1.0 - tiny)
+ *     where
+ *      R2(z) = degree 6 poly in z, (z=1/x^2)
+ *      S2(z) = degree 7 poly in z
+ *
+ *      Note1:
+ *     To compute exp(-x*x-0.5625+R/S), let s be a single
+ *     precision number and s := x; then
+ *      -x*x = -s*s + (s-x)*(s+x)
+ *          exp(-x*x-0.5626+R/S) =
+ *          exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
+ *      Note2:
+ *     Here 4 and 5 make use of the asymptotic series
+ *            exp(-x*x)
+ *      erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
+ *            x*sqrt(pi)
+ *     We use rational approximation to approximate
+ *          g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
+ *     Here is the error bound for R1/S1 and R2/S2
+ *          |R1/S1 - f(x)|  < 2**(-62.57)
+ *          |R2/S2 - f(x)|  < 2**(-61.52)
+ *
+ *      5. For inf > x >= 28
+ *          erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
+ *          erfc(x) = tiny*tiny (raise underflow) if x > 0
+ *          = 2 - tiny if x<0
+ *
+ *      7. Special case:
+ *          erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
+ *          erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
+ *      erfc/erf(NaN) is NaN
+ */
+
+
+
+
+
+////--------------------------------------------------
+
+#define __ieee754_exp   exp
+typedef TUint32 u_int32_t;
+typedef TInt32 int32_t;
+
+typedef union
+    {
+    double value;
+    struct
+        {
+        u_int32_t lsw;
+        u_int32_t msw;
+        } parts;
+    } ieee_double_shape_type;
+
+
+inline void GET_HIGH_WORD(int32_t& aHighWord, double aValue)
+    {
+    ieee_double_shape_type gh_u;
+    gh_u.value = aValue;
+    aHighWord = gh_u.parts.msw;                  
+    }
+    
+inline void SET_LOW_WORD(double& aValue, int32_t aLowWord)
+    {
+    ieee_double_shape_type sl_u;
+    sl_u.value = aValue;
+    sl_u.parts.lsw = aLowWord;
+    aValue = sl_u.value;
+    }
+
+//----------------------------------------------------------------math_private.h
+
+static const double tiny    = 1e-300;
+static const double tinySquare    = 0.00; // tiny * tiny 
+static const double half    = 5.00000000000000000000e-01; /* 0x3FE00000, 0x00000000 */
+static const double one     = 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
+static const double two     = 2.00000000000000000000e+00; /* 0x40000000, 0x00000000 */
+    /* c = (float)0.84506291151 */
+static const double erx     = 8.45062911510467529297e-01; /* 0x3FEB0AC1, 0x60000000 */
+/*
+ * Coefficients for approximation to  erf on [0,0.84375]
+ */
+static const double efx     =  1.28379167095512586316e-01; /* 0x3FC06EBA, 0x8214DB69 */
+static const double efx8    =  1.02703333676410069053e+00; /* 0x3FF06EBA, 0x8214DB69 */
+static const double pp0     =  1.28379167095512558561e-01; /* 0x3FC06EBA, 0x8214DB68 */
+static const double pp1     = -3.25042107247001499370e-01; /* 0xBFD4CD7D, 0x691CB913 */
+static const double pp2     = -2.84817495755985104766e-02; /* 0xBF9D2A51, 0xDBD7194F */
+static const double pp3     = -5.77027029648944159157e-03; /* 0xBF77A291, 0x236668E4 */
+static const double pp4     = -2.37630166566501626084e-05; /* 0xBEF8EAD6, 0x120016AC */
+static const double qq1     =  3.97917223959155352819e-01; /* 0x3FD97779, 0xCDDADC09 */
+static const double qq2     =  6.50222499887672944485e-02; /* 0x3FB0A54C, 0x5536CEBA */
+static const double qq3     =  5.08130628187576562776e-03; /* 0x3F74D022, 0xC4D36B0F */
+static const double qq4     =  1.32494738004321644526e-04; /* 0x3F215DC9, 0x221C1A10 */
+static const double qq5     = -3.96022827877536812320e-06; /* 0xBED09C43, 0x42A26120 */
+/*
+ * Coefficients for approximation to  erf  in [0.84375,1.25]
+ */
+static const double pa0     = -2.36211856075265944077e-03; /* 0xBF6359B8, 0xBEF77538 */
+static const double pa1     =  4.14856118683748331666e-01; /* 0x3FDA8D00, 0xAD92B34D */
+static const double pa2     = -3.72207876035701323847e-01; /* 0xBFD7D240, 0xFBB8C3F1 */
+static const double pa3     =  3.18346619901161753674e-01; /* 0x3FD45FCA, 0x805120E4 */
+static const double pa4     = -1.10894694282396677476e-01; /* 0xBFBC6398, 0x3D3E28EC */
+static const double pa5     =  3.54783043256182359371e-02; /* 0x3FA22A36, 0x599795EB */
+static const double pa6     = -2.16637559486879084300e-03; /* 0xBF61BF38, 0x0A96073F */
+static const double qa1     =  1.06420880400844228286e-01; /* 0x3FBB3E66, 0x18EEE323 */
+static const double qa2     =  5.40397917702171048937e-01; /* 0x3FE14AF0, 0x92EB6F33 */
+static const double qa3     =  7.18286544141962662868e-02; /* 0x3FB2635C, 0xD99FE9A7 */
+static const double qa4     =  1.26171219808761642112e-01; /* 0x3FC02660, 0xE763351F */
+static const double qa5     =  1.36370839120290507362e-02; /* 0x3F8BEDC2, 0x6B51DD1C */
+static const double qa6     =  1.19844998467991074170e-02; /* 0x3F888B54, 0x5735151D */
+/*
+ * Coefficients for approximation to  erfc in [1.25,1/0.35]
+ */
+static const double ra0     = -9.86494403484714822705e-03; /* 0xBF843412, 0x600D6435 */
+static const double ra1     = -6.93858572707181764372e-01; /* 0xBFE63416, 0xE4BA7360 */
+static const double ra2     = -1.05586262253232909814e+01; /* 0xC0251E04, 0x41B0E726 */
+static const double ra3     = -6.23753324503260060396e+01; /* 0xC04F300A, 0xE4CBA38D */
+static const double ra4     = -1.62396669462573470355e+02; /* 0xC0644CB1, 0x84282266 */
+static const double ra5     = -1.84605092906711035994e+02; /* 0xC067135C, 0xEBCCABB2 */
+static const double ra6     = -8.12874355063065934246e+01; /* 0xC0545265, 0x57E4D2F2 */
+static const double ra7     = -9.81432934416914548592e+00; /* 0xC023A0EF, 0xC69AC25C */
+static const double sa1     =  1.96512716674392571292e+01; /* 0x4033A6B9, 0xBD707687 */
+static const double sa2     =  1.37657754143519042600e+02; /* 0x4061350C, 0x526AE721 */
+static const double sa3     =  4.34565877475229228821e+02; /* 0x407B290D, 0xD58A1A71 */
+static const double sa4     =  6.45387271733267880336e+02; /* 0x40842B19, 0x21EC2868 */
+static const double sa5     =  4.29008140027567833386e+02; /* 0x407AD021, 0x57700314 */
+static const double sa6     =  1.08635005541779435134e+02; /* 0x405B28A3, 0xEE48AE2C */
+static const double sa7     =  6.57024977031928170135e+00; /* 0x401A47EF, 0x8E484A93 */
+static const double sa8     = -6.04244152148580987438e-02; /* 0xBFAEEFF2, 0xEE749A62 */
+/*
+ * Coefficients for approximation to  erfc in [1/.35,28]
+ */
+static const double rb0     = -9.86494292470009928597e-03; /* 0xBF843412, 0x39E86F4A */
+static const double rb1     = -7.99283237680523006574e-01; /* 0xBFE993BA, 0x70C285DE */
+static const double rb2     = -1.77579549177547519889e+01; /* 0xC031C209, 0x555F995A */
+static const double rb3     = -1.60636384855821916062e+02; /* 0xC064145D, 0x43C5ED98 */
+static const double rb4     = -6.37566443368389627722e+02; /* 0xC083EC88, 0x1375F228 */
+static const double rb5     = -1.02509513161107724954e+03; /* 0xC0900461, 0x6A2E5992 */
+static const double rb6     = -4.83519191608651397019e+02; /* 0xC07E384E, 0x9BDC383F */
+static const double sb1     =  3.03380607434824582924e+01; /* 0x403E568B, 0x261D5190 */
+static const double sb2     =  3.25792512996573918826e+02; /* 0x40745CAE, 0x221B9F0A */
+static const double sb3     =  1.53672958608443695994e+03; /* 0x409802EB, 0x189D5118 */
+static const double sb4     =  3.19985821950859553908e+03; /* 0x40A8FFB7, 0x688C246A */
+static const double sb5     =  2.55305040643316442583e+03; /* 0x40A3F219, 0xCEDF3BE6 */
+static const double sb6     =  4.74528541206955367215e+02; /* 0x407DA874, 0xE79FE763 */
+static const double sb7     = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
+
+double erf(double x)
+{
+    TInt32 hx,ix,i;
+    double R,S,P,Q,s,y,z,r;
+    GET_HIGH_WORD(hx,x);
+    ix = hx&0x7fffffff;
+    if(ix>=0x7ff00000) {        /* erf(nan)=nan */
+        i = ((TUint32)hx>>31)<<1;
+        return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */
+    }
+
+    if(ix < 0x3feb0000) {       /* |x|<0.84375 */
+        if(ix < 0x3e300000) {   /* |x|<2**-28 */
+            if (ix < 0x00800000)
+            return 0.125*(8.0*x+efx8*x);  /*avoid underflow */
+        return x + efx*x;
+        }
+        z = x*x;
+        r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
+        s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
+        y = r/s;
+        return x + x*y;
+    }
+    if(ix < 0x3ff40000) {       /* 0.84375 <= |x| < 1.25 */
+        s = fabs(x)-one;
+        P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
+        Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
+        if(hx>=0) return erx + P/Q; else return -erx - P/Q;
+    }
+    if (ix >= 0x40180000) {     /* inf>|x|>=6 */
+        if(hx>=0) return one-tiny; else return tiny-one;
+    }
+    x = fabs(x);
+    s = one/(x*x);
+    if(ix< 0x4006DB6E) {    /* |x| < 1/0.35 */
+        R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
+                ra5+s*(ra6+s*ra7))))));
+        S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
+                sa5+s*(sa6+s*(sa7+s*sa8)))))));
+    } else {    /* |x| >= 1/0.35 */
+        R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
+                rb5+s*rb6)))));
+        S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
+                sb5+s*(sb6+s*sb7))))));
+    }
+    z  = x;
+    SET_LOW_WORD(z,0);
+    r  =  __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S);
+    if(hx>=0) return one-r/x; else return  r/x-one;
+}
+
+double erfc(double x)
+{
+    int32_t hx,ix;
+    double R,S,P,Q,s,y,z,r;
+    GET_HIGH_WORD(hx,x);
+    ix = hx&0x7fffffff;
+    if(ix>=0x7ff00000) {            /* erfc(nan)=nan */
+                        /* erfc(+-inf)=0,2 */
+        return (double)(((u_int32_t)hx>>31)<<1)+one/x;
+    }
+
+    if(ix < 0x3feb0000) {       /* |x|<0.84375 */
+        if(ix < 0x3c700000)     /* |x|<2**-56 */
+        return one-x;
+        z = x*x;
+        r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
+        s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
+        y = r/s;
+        if(hx < 0x3fd00000) {   /* x<1/4 */
+        return one-(x+x*y);
+        } else {
+        r = x*y;
+        r += (x-half);
+            return half - r ;
+        }
+    }
+    if(ix < 0x3ff40000) {       /* 0.84375 <= |x| < 1.25 */
+        s = fabs(x)-one;
+        P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
+        Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
+        if(hx>=0) {
+            z  = one-erx; return z - P/Q;
+        } else {
+        z = erx+P/Q; return one+z;
+        }
+    }
+    if (ix < 0x403c0000) {      /* |x|<28 */
+        x = fabs(x);
+        s = one/(x*x);
+        if(ix< 0x4006DB6D) {    /* |x| < 1/.35 ~ 2.857143*/
+            R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
+                ra5+s*(ra6+s*ra7))))));
+            S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
+                sa5+s*(sa6+s*(sa7+s*sa8)))))));
+        } else {            /* |x| >= 1/.35 ~ 2.857143 */
+        if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
+            R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
+                rb5+s*rb6)))));
+            S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
+                sb5+s*(sb6+s*sb7))))));
+        }
+        z  = x;
+        SET_LOW_WORD(z,0);
+        r  =  __ieee754_exp(-z*z-0.5625)*
+            __ieee754_exp((z-x)*(z+x)+R/S);
+        if(hx>0) return r/x; else return two-r/x;
+    } else {
+        if(hx>0) return tinySquare; else return two-tiny;
+    }
+}