kerneltest/e32utils/nistsecurerng/src/universal.cpp
branchRCL_3
changeset 43 c1f20ce4abcf
equal deleted inserted replaced
42:a179b74831c9 43:c1f20ce4abcf
       
     1 /*
       
     2 * Portions Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies).
       
     3 * All rights reserved.
       
     4 * This component and the accompanying materials are made available
       
     5 * under the terms of "Eclipse Public License v1.0"
       
     6 * which accompanies this distribution, and is available
       
     7 * at the URL "http://www.eclipse.org/legal/epl-v10.html".
       
     8 *
       
     9 * Initial Contributors:
       
    10 * Nokia Corporation - initial contribution.
       
    11 *
       
    12 * Contributors:
       
    13 *
       
    14 * Description: 
       
    15 * The original NIST Statistical Test Suite code is placed in public domain.
       
    16 * (http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html) 
       
    17 * 
       
    18 * This software was developed at the National Institute of Standards and Technology by 
       
    19 * employees of the Federal Government in the course of their official duties. Pursuant
       
    20 * to title 17 Section 105 of the United States Code this software is not subject to 
       
    21 * copyright protection and is in the public domain. The NIST Statistical Test Suite is
       
    22 * an experimental system. NIST assumes no responsibility whatsoever for its use by other 
       
    23 * parties, and makes no guarantees, expressed or implied, about its quality, reliability, 
       
    24 * or any other characteristic. We would appreciate acknowledgment if the software is used.
       
    25 */
       
    26 
       
    27 #include "openc.h"
       
    28 #include "../include/externs.h"
       
    29 #include "../include/utilities.h"
       
    30 #include "../include/cephes.h"
       
    31 
       
    32 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
       
    33                          U N I V E R S A L  T E S T
       
    34  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
       
    35 
       
    36 void
       
    37 Universal(int n)
       
    38 {
       
    39 	int		i, j, p, L, Q, K;
       
    40 	double	arg, sqrt2, sigma, phi, sum, p_value, c;
       
    41 	long	*T, decRep;
       
    42 	double	expected_value[17] = { 0, 0, 0, 0, 0, 0, 5.2177052, 6.1962507, 7.1836656,
       
    43 				8.1764248, 9.1723243, 10.170032, 11.168765,
       
    44 				12.168070, 13.167693, 14.167488, 15.167379 };
       
    45 	double   variance[17] = { 0, 0, 0, 0, 0, 0, 2.954, 3.125, 3.238, 3.311, 3.356, 3.384,
       
    46 				3.401, 3.410, 3.416, 3.419, 3.421 };
       
    47 	
       
    48 	/* * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
       
    49 	 * THE FOLLOWING REDEFINES L, SHOULD THE CONDITION:     n >= 1010*2^L*L       *
       
    50 	 * NOT BE MET, FOR THE BLOCK LENGTH L.                                        *
       
    51 	 * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * */
       
    52 	L = 5;
       
    53 	if ( n >= 387840 )     L = 6;
       
    54 	if ( n >= 904960 )     L = 7;
       
    55 	if ( n >= 2068480 )    L = 8;
       
    56 	if ( n >= 4654080 )    L = 9;
       
    57 	if ( n >= 10342400 )   L = 10;
       
    58 	if ( n >= 22753280 )   L = 11;
       
    59 	if ( n >= 49643520 )   L = 12;
       
    60 	if ( n >= 107560960 )  L = 13;
       
    61 	if ( n >= 231669760 )  L = 14;
       
    62 	if ( n >= 496435200 )  L = 15;
       
    63 	if ( n >= 1059061760 ) L = 16;
       
    64 	
       
    65 	Q = 10*(int)pow(2, L);
       
    66 	K = (int) (floor(n/L) - (double)Q);	 		    /* BLOCKS TO TEST */
       
    67 	
       
    68 	p = (int)pow(2, L);
       
    69 	if ( (L < 6) || (L > 16) || ((double)Q < 10*pow(2, L)) ||
       
    70 		 ((T = (long *)calloc(p, sizeof(long))) == NULL) ) {
       
    71 		fprintf(stats[TEST_UNIVERSAL], "\t\tUNIVERSAL STATISTICAL TEST\n");
       
    72 		fprintf(stats[TEST_UNIVERSAL], "\t\t---------------------------------------------\n");
       
    73 		fprintf(stats[TEST_UNIVERSAL], "\t\tERROR:  L IS OUT OF RANGE.\n");
       
    74 		fprintf(stats[TEST_UNIVERSAL], "\t\t-OR- :  Q IS LESS THAN %f.\n", 10*pow(2, L));
       
    75 		fprintf(stats[TEST_UNIVERSAL], "\t\t-OR- :  Unable to allocate T.\n");
       
    76 		return;
       
    77 	}
       
    78 	
       
    79 	/* COMPUTE THE EXPECTED:  Formula 16, in Marsaglia's Paper */
       
    80 	c = 0.7 - 0.8/(double)L + (4 + 32/(double)L)*pow(K, -3/(double)L)/15;
       
    81 	sigma = c * sqrt(variance[L]/(double)K);
       
    82 	sqrt2 = sqrt(2);
       
    83 	sum = 0.0;
       
    84 	for ( i=0; i<p; i++ )
       
    85 		T[i] = 0;
       
    86 	for ( i=1; i<=Q; i++ ) {		/* INITIALIZE TABLE */
       
    87 		decRep = 0;
       
    88 		for ( j=0; j<L; j++ )
       
    89 			decRep += epsilon[(i-1)*L+j] * (long)pow(2, L-1-j);
       
    90 		T[decRep] = i;
       
    91 	}
       
    92 	for ( i=Q+1; i<=Q+K; i++ ) { 	/* PROCESS BLOCKS */
       
    93 		decRep = 0;
       
    94 		for ( j=0; j<L; j++ )
       
    95 			decRep += epsilon[(i-1)*L+j] * (long)pow(2, L-1-j);
       
    96 		sum += log(i - T[decRep])/log(2);
       
    97 		T[decRep] = i;
       
    98 	}
       
    99 	phi = (double)(sum/(double)K);
       
   100 
       
   101 	fprintf(stats[TEST_UNIVERSAL], "\t\tUNIVERSAL STATISTICAL TEST\n");
       
   102 	fprintf(stats[TEST_UNIVERSAL], "\t\t--------------------------------------------\n");
       
   103 	fprintf(stats[TEST_UNIVERSAL], "\t\tCOMPUTATIONAL INFORMATION:\n");
       
   104 	fprintf(stats[TEST_UNIVERSAL], "\t\t--------------------------------------------\n");
       
   105 	fprintf(stats[TEST_UNIVERSAL], "\t\t(a) L         = %d\n", L);
       
   106 	fprintf(stats[TEST_UNIVERSAL], "\t\t(b) Q         = %d\n", Q);
       
   107 	fprintf(stats[TEST_UNIVERSAL], "\t\t(c) K         = %d\n", K);
       
   108 	fprintf(stats[TEST_UNIVERSAL], "\t\t(d) sum       = %f\n", sum);
       
   109 	fprintf(stats[TEST_UNIVERSAL], "\t\t(e) sigma     = %f\n", sigma);
       
   110 	fprintf(stats[TEST_UNIVERSAL], "\t\t(f) variance  = %f\n", variance[L]);
       
   111 	fprintf(stats[TEST_UNIVERSAL], "\t\t(g) exp_value = %f\n", expected_value[L]);
       
   112 	fprintf(stats[TEST_UNIVERSAL], "\t\t(h) phi       = %f\n", phi);
       
   113 	fprintf(stats[TEST_UNIVERSAL], "\t\t(i) WARNING:  %d bits were discarded.\n", n-(Q+K)*L);
       
   114 	fprintf(stats[TEST_UNIVERSAL], "\t\t-----------------------------------------\n");
       
   115 
       
   116 	arg = fabs(phi-expected_value[L])/(sqrt2 * sigma);
       
   117 	p_value = erfc(arg);
       
   118 	if ( isNegative(p_value) || isGreaterThanOne(p_value) )
       
   119 		fprintf(stats[TEST_UNIVERSAL], "\t\tWARNING:  P_VALUE IS OUT OF RANGE\n");
       
   120 
       
   121 	fprintf(stats[TEST_UNIVERSAL], "%s\t\tp_value = %f\n\n", p_value < ALPHA ? "FAILURE" : "SUCCESS", p_value);    
       
   122 	fprintf(results[TEST_UNIVERSAL], "%f\n", p_value);
       
   123 	
       
   124 	free(T);
       
   125 }