/*
* Portions Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
* The original NIST Statistical Test Suite code is placed in public domain.
* (http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html)
*
* This software was developed at the National Institute of Standards and Technology by
* employees of the Federal Government in the course of their official duties. Pursuant
* to title 17 Section 105 of the United States Code this software is not subject to
* copyright protection and is in the public domain. The NIST Statistical Test Suite is
* an experimental system. NIST assumes no responsibility whatsoever for its use by other
* parties, and makes no guarantees, expressed or implied, about its quality, reliability,
* or any other characteristic. We would appreciate acknowledgment if the software is used.
*/
#include "openc.h"
#include "../include/externs.h"
#include "../include/utilities.h"
#include "../include/cephes.h"
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
U N I V E R S A L T E S T
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
void
Universal(int n)
{
int i, j, p, L, Q, K;
double arg, sqrt2, sigma, phi, sum, p_value, c;
long *T, decRep;
double expected_value[17] = { 0, 0, 0, 0, 0, 0, 5.2177052, 6.1962507, 7.1836656,
8.1764248, 9.1723243, 10.170032, 11.168765,
12.168070, 13.167693, 14.167488, 15.167379 };
double variance[17] = { 0, 0, 0, 0, 0, 0, 2.954, 3.125, 3.238, 3.311, 3.356, 3.384,
3.401, 3.410, 3.416, 3.419, 3.421 };
/* * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* THE FOLLOWING REDEFINES L, SHOULD THE CONDITION: n >= 1010*2^L*L *
* NOT BE MET, FOR THE BLOCK LENGTH L. *
* * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * */
L = 5;
if ( n >= 387840 ) L = 6;
if ( n >= 904960 ) L = 7;
if ( n >= 2068480 ) L = 8;
if ( n >= 4654080 ) L = 9;
if ( n >= 10342400 ) L = 10;
if ( n >= 22753280 ) L = 11;
if ( n >= 49643520 ) L = 12;
if ( n >= 107560960 ) L = 13;
if ( n >= 231669760 ) L = 14;
if ( n >= 496435200 ) L = 15;
if ( n >= 1059061760 ) L = 16;
Q = 10*(int)pow(2, L);
K = (int) (floor(n/L) - (double)Q); /* BLOCKS TO TEST */
p = (int)pow(2, L);
if ( (L < 6) || (L > 16) || ((double)Q < 10*pow(2, L)) ||
((T = (long *)calloc(p, sizeof(long))) == NULL) ) {
fprintf(stats[TEST_UNIVERSAL], "\t\tUNIVERSAL STATISTICAL TEST\n");
fprintf(stats[TEST_UNIVERSAL], "\t\t---------------------------------------------\n");
fprintf(stats[TEST_UNIVERSAL], "\t\tERROR: L IS OUT OF RANGE.\n");
fprintf(stats[TEST_UNIVERSAL], "\t\t-OR- : Q IS LESS THAN %f.\n", 10*pow(2, L));
fprintf(stats[TEST_UNIVERSAL], "\t\t-OR- : Unable to allocate T.\n");
return;
}
/* COMPUTE THE EXPECTED: Formula 16, in Marsaglia's Paper */
c = 0.7 - 0.8/(double)L + (4 + 32/(double)L)*pow(K, -3/(double)L)/15;
sigma = c * sqrt(variance[L]/(double)K);
sqrt2 = sqrt(2);
sum = 0.0;
for ( i=0; i<p; i++ )
T[i] = 0;
for ( i=1; i<=Q; i++ ) { /* INITIALIZE TABLE */
decRep = 0;
for ( j=0; j<L; j++ )
decRep += epsilon[(i-1)*L+j] * (long)pow(2, L-1-j);
T[decRep] = i;
}
for ( i=Q+1; i<=Q+K; i++ ) { /* PROCESS BLOCKS */
decRep = 0;
for ( j=0; j<L; j++ )
decRep += epsilon[(i-1)*L+j] * (long)pow(2, L-1-j);
sum += log(i - T[decRep])/log(2);
T[decRep] = i;
}
phi = (double)(sum/(double)K);
fprintf(stats[TEST_UNIVERSAL], "\t\tUNIVERSAL STATISTICAL TEST\n");
fprintf(stats[TEST_UNIVERSAL], "\t\t--------------------------------------------\n");
fprintf(stats[TEST_UNIVERSAL], "\t\tCOMPUTATIONAL INFORMATION:\n");
fprintf(stats[TEST_UNIVERSAL], "\t\t--------------------------------------------\n");
fprintf(stats[TEST_UNIVERSAL], "\t\t(a) L = %d\n", L);
fprintf(stats[TEST_UNIVERSAL], "\t\t(b) Q = %d\n", Q);
fprintf(stats[TEST_UNIVERSAL], "\t\t(c) K = %d\n", K);
fprintf(stats[TEST_UNIVERSAL], "\t\t(d) sum = %f\n", sum);
fprintf(stats[TEST_UNIVERSAL], "\t\t(e) sigma = %f\n", sigma);
fprintf(stats[TEST_UNIVERSAL], "\t\t(f) variance = %f\n", variance[L]);
fprintf(stats[TEST_UNIVERSAL], "\t\t(g) exp_value = %f\n", expected_value[L]);
fprintf(stats[TEST_UNIVERSAL], "\t\t(h) phi = %f\n", phi);
fprintf(stats[TEST_UNIVERSAL], "\t\t(i) WARNING: %d bits were discarded.\n", n-(Q+K)*L);
fprintf(stats[TEST_UNIVERSAL], "\t\t-----------------------------------------\n");
arg = fabs(phi-expected_value[L])/(sqrt2 * sigma);
p_value = erfc(arg);
if ( isNegative(p_value) || isGreaterThanOne(p_value) )
fprintf(stats[TEST_UNIVERSAL], "\t\tWARNING: P_VALUE IS OUT OF RANGE\n");
fprintf(stats[TEST_UNIVERSAL], "%s\t\tp_value = %f\n\n", p_value < ALPHA ? "FAILURE" : "SUCCESS", p_value);
fprintf(results[TEST_UNIVERSAL], "%f\n", p_value);
free(T);
}