kerneltest/e32utils/nistsecurerng/src/linearComplexity.cpp
branchRCL_3
changeset 43 c1f20ce4abcf
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/kerneltest/e32utils/nistsecurerng/src/linearComplexity.cpp	Tue Aug 31 16:34:26 2010 +0300
@@ -0,0 +1,153 @@
+/*
+* Portions Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies).
+* All rights reserved.
+* This component and the accompanying materials are made available
+* under the terms of "Eclipse Public License v1.0"
+* which accompanies this distribution, and is available
+* at the URL "http://www.eclipse.org/legal/epl-v10.html".
+*
+* Initial Contributors:
+* Nokia Corporation - initial contribution.
+*
+* Contributors:
+*
+* Description: 
+* The original NIST Statistical Test Suite code is placed in public domain.
+* (http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html) 
+* 
+* This software was developed at the National Institute of Standards and Technology by 
+* employees of the Federal Government in the course of their official duties. Pursuant
+* to title 17 Section 105 of the United States Code this software is not subject to 
+* copyright protection and is in the public domain. The NIST Statistical Test Suite is
+* an experimental system. NIST assumes no responsibility whatsoever for its use by other 
+* parties, and makes no guarantees, expressed or implied, about its quality, reliability, 
+* or any other characteristic. We would appreciate acknowledgment if the software is used.
+*/
+
+#include "openc.h"
+#include "../include/externs.h"
+#include "../include/cephes.h"  
+
+void
+LinearComplexity(int M, int n)
+{
+	int       i, ii, j, d, N, L, m, N_, sign, K = 6;
+	double    p_value, T_, mean, nu[7], chi2;
+	double    pi[7] = { 0.01047, 0.03125, 0.12500, 0.50000, 0.25000, 0.06250, 0.020833 };
+	BitSequence*   T = NULL;
+	BitSequence*   P = NULL;
+	BitSequence*   B_ = NULL;
+	BitSequence*   C = NULL;
+	
+	N = (int)floor(n/M);
+	if ( ((B_ = (BitSequence *) calloc(M, sizeof(BitSequence))) == NULL) ||
+		 ((C  = (BitSequence *) calloc(M, sizeof(BitSequence))) == NULL) ||
+		 ((P  = (BitSequence *) calloc(M, sizeof(BitSequence))) == NULL) ||
+		 ((T  = (BitSequence *) calloc(M, sizeof(BitSequence))) == NULL) ) {
+		printf("Insufficient Memory for Work Space:: Linear Complexity Test\n");
+		if ( B_!= NULL )
+			free(B_);
+		if ( C != NULL )
+			free(C);
+		if ( P != NULL )
+			free(P);
+		if ( T != NULL )
+			free(T);
+		return;
+	}
+
+
+	fprintf(stats[TEST_LINEARCOMPLEXITY], "-----------------------------------------------------\n");
+	fprintf(stats[TEST_LINEARCOMPLEXITY], "\tL I N E A R  C O M P L E X I T Y\n");
+	fprintf(stats[TEST_LINEARCOMPLEXITY], "-----------------------------------------------------\n");
+	fprintf(stats[TEST_LINEARCOMPLEXITY], "\tM (substring length)     = %d\n", M);
+	fprintf(stats[TEST_LINEARCOMPLEXITY], "\tN (number of substrings) = %d\n", N);
+	fprintf(stats[TEST_LINEARCOMPLEXITY], "-----------------------------------------------------\n");
+	fprintf(stats[TEST_LINEARCOMPLEXITY], "        F R E Q U E N C Y                            \n");
+	fprintf(stats[TEST_LINEARCOMPLEXITY], "-----------------------------------------------------\n");
+	fprintf(stats[TEST_LINEARCOMPLEXITY], "  C0   C1   C2   C3   C4   C5   C6    CHI2    P-value\n");
+	fprintf(stats[TEST_LINEARCOMPLEXITY], "-----------------------------------------------------\n");
+	fprintf(stats[TEST_LINEARCOMPLEXITY], "\tNote: %d bits were discarded!\n", n%M);
+
+	for ( i=0; i<K+1; i++ )
+		nu[i] = 0.00;
+	for ( ii=0; ii<N; ii++ ) {
+		for ( i=0; i<M; i++ ) {
+			B_[i] = 0;
+			C[i] = 0;
+			T[i] = 0;
+			P[i] = 0;
+		}
+		L = 0;
+		m = -1;
+		d = 0;
+		C[0] = 1;
+		B_[0] = 1;
+		
+		/* DETERMINE LINEAR COMPLEXITY */
+		N_ = 0;
+		while ( N_ < M ) {
+			d = (int)epsilon[ii*M+N_];
+			for ( i=1; i<=L; i++ )
+				d += C[i] * epsilon[ii*M+N_-i];
+			d = d%2;
+			if ( d == 1 ) {
+				for ( i=0; i<M; i++ ) {
+					T[i] = C[i];
+					P[i] = 0;
+				}
+				for ( j=0; j<M; j++ )
+					if ( B_[j] == 1 )
+						P[j+N_-m] = 1;
+				for ( i=0; i<M; i++ )
+					C[i] = (BitSequence)((C[i] + P[i])%2);
+				if ( L <= N_/2 ) {
+					L = N_ + 1 - L;
+					m = N_;
+					for ( i=0; i<M; i++ )
+						B_[i] = T[i];
+				}
+			}
+			N_++;
+		}
+		if (((M+1)%2) == 0 ) 
+			sign = -1;
+		else 
+			sign = 1;
+		mean = M/2.0 + (9.0+sign)/36.0 - 1.0/pow(2, M) * (M/3.0 + 2.0/9.0);
+		if ( (M%2) == 0 )
+			sign = 1;
+		else 
+			sign = -1;
+		T_ = sign * (L - mean) + 2.0/9.0;
+		
+		if ( T_ <= -2.5 )
+			nu[0]++;
+		else if ( T_ > -2.5 && T_ <= -1.5 )
+			nu[1]++;
+		else if ( T_ > -1.5 && T_ <= -0.5 )
+			nu[2]++;
+		else if ( T_ > -0.5 && T_ <= 0.5 )
+			nu[3]++;
+		else if ( T_ > 0.5 && T_ <= 1.5 )
+			nu[4]++;
+		else if ( T_ > 1.5 && T_ <= 2.5 )
+			nu[5]++;
+		else
+			nu[6]++;
+	}
+	chi2 = 0.00;
+	for ( i=0; i<K+1; i++ ) 
+		fprintf(stats[TEST_LINEARCOMPLEXITY], "%4d ", (int)nu[i]);
+	for ( i=0; i<K+1; i++ )
+		chi2 += pow(nu[i]-N*pi[i], 2) / (N*pi[i]);
+	p_value = cephes_igamc(K/2.0, chi2/2.0);
+
+	fprintf(stats[TEST_LINEARCOMPLEXITY], "%9.6f%9.6f\n", chi2, p_value);
+	fprintf(results[TEST_LINEARCOMPLEXITY], "%f\n", p_value);
+
+	free(B_);
+	free(P);
+	free(C);
+	free(T);
+}