kerneltest/e32utils/nistsecurerng/src/linearComplexity.cpp
author Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
Tue, 31 Aug 2010 16:34:26 +0300
branchRCL_3
changeset 43 c1f20ce4abcf
permissions -rw-r--r--
Revision: 201035 Kit: 201035

/*
* Portions Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description: 
* The original NIST Statistical Test Suite code is placed in public domain.
* (http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html) 
* 
* This software was developed at the National Institute of Standards and Technology by 
* employees of the Federal Government in the course of their official duties. Pursuant
* to title 17 Section 105 of the United States Code this software is not subject to 
* copyright protection and is in the public domain. The NIST Statistical Test Suite is
* an experimental system. NIST assumes no responsibility whatsoever for its use by other 
* parties, and makes no guarantees, expressed or implied, about its quality, reliability, 
* or any other characteristic. We would appreciate acknowledgment if the software is used.
*/

#include "openc.h"
#include "../include/externs.h"
#include "../include/cephes.h"  

void
LinearComplexity(int M, int n)
{
	int       i, ii, j, d, N, L, m, N_, sign, K = 6;
	double    p_value, T_, mean, nu[7], chi2;
	double    pi[7] = { 0.01047, 0.03125, 0.12500, 0.50000, 0.25000, 0.06250, 0.020833 };
	BitSequence*   T = NULL;
	BitSequence*   P = NULL;
	BitSequence*   B_ = NULL;
	BitSequence*   C = NULL;
	
	N = (int)floor(n/M);
	if ( ((B_ = (BitSequence *) calloc(M, sizeof(BitSequence))) == NULL) ||
		 ((C  = (BitSequence *) calloc(M, sizeof(BitSequence))) == NULL) ||
		 ((P  = (BitSequence *) calloc(M, sizeof(BitSequence))) == NULL) ||
		 ((T  = (BitSequence *) calloc(M, sizeof(BitSequence))) == NULL) ) {
		printf("Insufficient Memory for Work Space:: Linear Complexity Test\n");
		if ( B_!= NULL )
			free(B_);
		if ( C != NULL )
			free(C);
		if ( P != NULL )
			free(P);
		if ( T != NULL )
			free(T);
		return;
	}


	fprintf(stats[TEST_LINEARCOMPLEXITY], "-----------------------------------------------------\n");
	fprintf(stats[TEST_LINEARCOMPLEXITY], "\tL I N E A R  C O M P L E X I T Y\n");
	fprintf(stats[TEST_LINEARCOMPLEXITY], "-----------------------------------------------------\n");
	fprintf(stats[TEST_LINEARCOMPLEXITY], "\tM (substring length)     = %d\n", M);
	fprintf(stats[TEST_LINEARCOMPLEXITY], "\tN (number of substrings) = %d\n", N);
	fprintf(stats[TEST_LINEARCOMPLEXITY], "-----------------------------------------------------\n");
	fprintf(stats[TEST_LINEARCOMPLEXITY], "        F R E Q U E N C Y                            \n");
	fprintf(stats[TEST_LINEARCOMPLEXITY], "-----------------------------------------------------\n");
	fprintf(stats[TEST_LINEARCOMPLEXITY], "  C0   C1   C2   C3   C4   C5   C6    CHI2    P-value\n");
	fprintf(stats[TEST_LINEARCOMPLEXITY], "-----------------------------------------------------\n");
	fprintf(stats[TEST_LINEARCOMPLEXITY], "\tNote: %d bits were discarded!\n", n%M);

	for ( i=0; i<K+1; i++ )
		nu[i] = 0.00;
	for ( ii=0; ii<N; ii++ ) {
		for ( i=0; i<M; i++ ) {
			B_[i] = 0;
			C[i] = 0;
			T[i] = 0;
			P[i] = 0;
		}
		L = 0;
		m = -1;
		d = 0;
		C[0] = 1;
		B_[0] = 1;
		
		/* DETERMINE LINEAR COMPLEXITY */
		N_ = 0;
		while ( N_ < M ) {
			d = (int)epsilon[ii*M+N_];
			for ( i=1; i<=L; i++ )
				d += C[i] * epsilon[ii*M+N_-i];
			d = d%2;
			if ( d == 1 ) {
				for ( i=0; i<M; i++ ) {
					T[i] = C[i];
					P[i] = 0;
				}
				for ( j=0; j<M; j++ )
					if ( B_[j] == 1 )
						P[j+N_-m] = 1;
				for ( i=0; i<M; i++ )
					C[i] = (BitSequence)((C[i] + P[i])%2);
				if ( L <= N_/2 ) {
					L = N_ + 1 - L;
					m = N_;
					for ( i=0; i<M; i++ )
						B_[i] = T[i];
				}
			}
			N_++;
		}
		if (((M+1)%2) == 0 ) 
			sign = -1;
		else 
			sign = 1;
		mean = M/2.0 + (9.0+sign)/36.0 - 1.0/pow(2, M) * (M/3.0 + 2.0/9.0);
		if ( (M%2) == 0 )
			sign = 1;
		else 
			sign = -1;
		T_ = sign * (L - mean) + 2.0/9.0;
		
		if ( T_ <= -2.5 )
			nu[0]++;
		else if ( T_ > -2.5 && T_ <= -1.5 )
			nu[1]++;
		else if ( T_ > -1.5 && T_ <= -0.5 )
			nu[2]++;
		else if ( T_ > -0.5 && T_ <= 0.5 )
			nu[3]++;
		else if ( T_ > 0.5 && T_ <= 1.5 )
			nu[4]++;
		else if ( T_ > 1.5 && T_ <= 2.5 )
			nu[5]++;
		else
			nu[6]++;
	}
	chi2 = 0.00;
	for ( i=0; i<K+1; i++ ) 
		fprintf(stats[TEST_LINEARCOMPLEXITY], "%4d ", (int)nu[i]);
	for ( i=0; i<K+1; i++ )
		chi2 += pow(nu[i]-N*pi[i], 2) / (N*pi[i]);
	p_value = cephes_igamc(K/2.0, chi2/2.0);

	fprintf(stats[TEST_LINEARCOMPLEXITY], "%9.6f%9.6f\n", chi2, p_value);
	fprintf(results[TEST_LINEARCOMPLEXITY], "%f\n", p_value);

	free(B_);
	free(P);
	free(C);
	free(T);
}