/*
* Portions Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
* The original NIST Statistical Test Suite code is placed in public domain.
* (http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html)
*
* This software was developed at the National Institute of Standards and Technology by
* employees of the Federal Government in the course of their official duties. Pursuant
* to title 17 Section 105 of the United States Code this software is not subject to
* copyright protection and is in the public domain. The NIST Statistical Test Suite is
* an experimental system. NIST assumes no responsibility whatsoever for its use by other
* parties, and makes no guarantees, expressed or implied, about its quality, reliability,
* or any other characteristic. We would appreciate acknowledgment if the software is used.
*/
#include "openc.h"
#include "../include/externs.h"
#include "../include/cephes.h"
void
LinearComplexity(int M, int n)
{
int i, ii, j, d, N, L, m, N_, sign, K = 6;
double p_value, T_, mean, nu[7], chi2;
double pi[7] = { 0.01047, 0.03125, 0.12500, 0.50000, 0.25000, 0.06250, 0.020833 };
BitSequence* T = NULL;
BitSequence* P = NULL;
BitSequence* B_ = NULL;
BitSequence* C = NULL;
N = (int)floor(n/M);
if ( ((B_ = (BitSequence *) calloc(M, sizeof(BitSequence))) == NULL) ||
((C = (BitSequence *) calloc(M, sizeof(BitSequence))) == NULL) ||
((P = (BitSequence *) calloc(M, sizeof(BitSequence))) == NULL) ||
((T = (BitSequence *) calloc(M, sizeof(BitSequence))) == NULL) ) {
printf("Insufficient Memory for Work Space:: Linear Complexity Test\n");
if ( B_!= NULL )
free(B_);
if ( C != NULL )
free(C);
if ( P != NULL )
free(P);
if ( T != NULL )
free(T);
return;
}
fprintf(stats[TEST_LINEARCOMPLEXITY], "-----------------------------------------------------\n");
fprintf(stats[TEST_LINEARCOMPLEXITY], "\tL I N E A R C O M P L E X I T Y\n");
fprintf(stats[TEST_LINEARCOMPLEXITY], "-----------------------------------------------------\n");
fprintf(stats[TEST_LINEARCOMPLEXITY], "\tM (substring length) = %d\n", M);
fprintf(stats[TEST_LINEARCOMPLEXITY], "\tN (number of substrings) = %d\n", N);
fprintf(stats[TEST_LINEARCOMPLEXITY], "-----------------------------------------------------\n");
fprintf(stats[TEST_LINEARCOMPLEXITY], " F R E Q U E N C Y \n");
fprintf(stats[TEST_LINEARCOMPLEXITY], "-----------------------------------------------------\n");
fprintf(stats[TEST_LINEARCOMPLEXITY], " C0 C1 C2 C3 C4 C5 C6 CHI2 P-value\n");
fprintf(stats[TEST_LINEARCOMPLEXITY], "-----------------------------------------------------\n");
fprintf(stats[TEST_LINEARCOMPLEXITY], "\tNote: %d bits were discarded!\n", n%M);
for ( i=0; i<K+1; i++ )
nu[i] = 0.00;
for ( ii=0; ii<N; ii++ ) {
for ( i=0; i<M; i++ ) {
B_[i] = 0;
C[i] = 0;
T[i] = 0;
P[i] = 0;
}
L = 0;
m = -1;
d = 0;
C[0] = 1;
B_[0] = 1;
/* DETERMINE LINEAR COMPLEXITY */
N_ = 0;
while ( N_ < M ) {
d = (int)epsilon[ii*M+N_];
for ( i=1; i<=L; i++ )
d += C[i] * epsilon[ii*M+N_-i];
d = d%2;
if ( d == 1 ) {
for ( i=0; i<M; i++ ) {
T[i] = C[i];
P[i] = 0;
}
for ( j=0; j<M; j++ )
if ( B_[j] == 1 )
P[j+N_-m] = 1;
for ( i=0; i<M; i++ )
C[i] = (BitSequence)((C[i] + P[i])%2);
if ( L <= N_/2 ) {
L = N_ + 1 - L;
m = N_;
for ( i=0; i<M; i++ )
B_[i] = T[i];
}
}
N_++;
}
if (((M+1)%2) == 0 )
sign = -1;
else
sign = 1;
mean = M/2.0 + (9.0+sign)/36.0 - 1.0/pow(2, M) * (M/3.0 + 2.0/9.0);
if ( (M%2) == 0 )
sign = 1;
else
sign = -1;
T_ = sign * (L - mean) + 2.0/9.0;
if ( T_ <= -2.5 )
nu[0]++;
else if ( T_ > -2.5 && T_ <= -1.5 )
nu[1]++;
else if ( T_ > -1.5 && T_ <= -0.5 )
nu[2]++;
else if ( T_ > -0.5 && T_ <= 0.5 )
nu[3]++;
else if ( T_ > 0.5 && T_ <= 1.5 )
nu[4]++;
else if ( T_ > 1.5 && T_ <= 2.5 )
nu[5]++;
else
nu[6]++;
}
chi2 = 0.00;
for ( i=0; i<K+1; i++ )
fprintf(stats[TEST_LINEARCOMPLEXITY], "%4d ", (int)nu[i]);
for ( i=0; i<K+1; i++ )
chi2 += pow(nu[i]-N*pi[i], 2) / (N*pi[i]);
p_value = cephes_igamc(K/2.0, chi2/2.0);
fprintf(stats[TEST_LINEARCOMPLEXITY], "%9.6f%9.6f\n", chi2, p_value);
fprintf(results[TEST_LINEARCOMPLEXITY], "%f\n", p_value);
free(B_);
free(P);
free(C);
free(T);
}