Convert Kernelhwsrv package from SFL to EPL
kernel\eka\compsupp is subject to the ARM EABI LICENSE
userlibandfileserver\fatfilenameconversionplugins\unicodeTables is subject to the Unicode license
kernel\eka\kernel\zlib is subject to the zlib license
// Copyright (c) 2000-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32/drivers/usbcc/misc.cpp
// Platform independent layer (PIL) of the USB Device controller driver:
// Implementations of misc. classes defined in usbc.h.
//
//
/**
@file misc.cpp
@internalTechnology
*/
#include <drivers/usbc.h>
/** Helper function for logical endpoints and endpoint descriptors:
Split single Ep size into separate FS/HS sizes.
This function modifies its arguments.
*/
TInt TUsbcEndpointInfo::AdjustEpSizes(TInt& aEpSize_Fs, TInt& aEpSize_Hs) const
{
if (iType == KUsbEpTypeBulk)
{
// FS: [8|16|32|64] HS: 512
if (iSize < 64)
{
aEpSize_Fs = iSize;
}
else
{
aEpSize_Fs = 64;
}
aEpSize_Hs = 512;
}
else if (iType == KUsbEpTypeInterrupt)
{
// FS: [0..64] HS: [0..1024]
if (iSize < 64)
{
aEpSize_Fs = iSize;
}
else
{
aEpSize_Fs = 64;
}
aEpSize_Hs = iSize;
}
else if (iType == KUsbEpTypeIsochronous)
{
// FS: [0..1023] HS: [0..1024]
if (iSize < 1023)
{
aEpSize_Fs = iSize;
}
else
{
aEpSize_Fs = 1023;
}
aEpSize_Hs = iSize;
}
else if (iType == KUsbEpTypeControl)
{
// FS: [8|16|32|64] HS: 64
if (iSize < 64)
{
aEpSize_Fs = iSize;
}
else
{
aEpSize_Fs = 64;
}
aEpSize_Hs = 64;
}
else
{
aEpSize_Fs = aEpSize_Hs = 0;
return KErrGeneral;
}
// For the reason of the following checks see Table 9-14. "Allowed wMaxPacketSize
// Values for Different Numbers of Transactions per Microframe".
if ((iType == KUsbEpTypeInterrupt) || (iType == KUsbEpTypeIsochronous))
{
if (iTransactions == 1)
{
if (aEpSize_Hs < 513)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Warning: Ep size too small: %d < 513. Correcting...",
aEpSize_Hs));
aEpSize_Hs = 513;
}
}
else if (iTransactions == 2)
{
if (aEpSize_Hs < 683)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Warning: Ep size too small: %d < 683. Correcting...",
aEpSize_Hs));
aEpSize_Hs = 683;
}
}
}
return KErrNone;
}
/** Helper function for logical endpoints and endpoint descriptors:
If not set, assign a valid and meaningful value to iInterval_Hs, deriving from iInterval.
This function modifies the objects's data member(s).
*/
TInt TUsbcEndpointInfo::AdjustPollInterval()
{
if (iInterval_Hs != -1)
{
// Already done.
return KErrNone;
}
if ((iType == KUsbEpTypeBulk) || (iType == KUsbEpTypeControl))
{
// Valid range: 0..255 (maximum NAK rate).
// (The host controller will probably ignore this value though -
// see the last sentence of section 9.6.6 for details.)
iInterval_Hs = 255;
}
else if (iType == KUsbEpTypeInterrupt)
{
// HS interval = 2^(iInterval_Hs-1) with a valid iInterval_Hs range of 1..16.
// The following table shows the mapping of HS values to actual intervals (and
// thus FS values) for the range of possible FS values (1..255).
// There is not always a 1:1 mapping possible, but we want at least to make sure
// that the HS polling interval is never longer than the FS one (except for 255).
//
// 1 = 1
// 2 = 2
// 3 = 4
// 4 = 8
// 5 = 16
// 6 = 32
// 7 = 64
// 8 = 128
// 9 = 256
if (iInterval == 255)
iInterval_Hs = 9;
else if (iInterval >= 128)
iInterval_Hs = 8;
else if (iInterval >= 64)
iInterval_Hs = 7;
else if (iInterval >= 32)
iInterval_Hs = 6;
else if (iInterval >= 16)
iInterval_Hs = 5;
else if (iInterval >= 8)
iInterval_Hs = 4;
else if (iInterval >= 4)
iInterval_Hs = 3;
else if (iInterval >= 2)
iInterval_Hs = 2;
else if (iInterval == 1)
iInterval_Hs = 1;
else
{
// iInterval wasn't set properly by the user
iInterval_Hs = 1;
return KErrGeneral;
}
}
else if (iType == KUsbEpTypeIsochronous)
{
// Interpretation is the same for FS and HS.
iInterval_Hs = iInterval;
}
else
{
// '1' is a valid value for all endpoint types...
iInterval_Hs = 1;
return KErrGeneral;
}
return KErrNone;
}
TUsbcPhysicalEndpoint::TUsbcPhysicalEndpoint()
: iEndpointAddr(0), iIfcNumber(NULL), iLEndpoint(NULL), iSettingReserve(EFalse), iHalt(EFalse)
{
__KTRACE_OPT(KUSB, Kern::Printf("TUsbcPhysicalEndpoint::TUsbcPhysicalEndpoint"));
}
TInt TUsbcPhysicalEndpoint::TypeAvailable(TUint aType) const
{
__KTRACE_OPT(KUSB, Kern::Printf("TUsbcPhysicalEndpoint::TypeAvailable"));
switch (aType)
{
case KUsbEpTypeControl:
return (iCaps.iTypesAndDir & KUsbEpTypeControl);
case KUsbEpTypeIsochronous:
return (iCaps.iTypesAndDir & KUsbEpTypeIsochronous);
case KUsbEpTypeBulk:
return (iCaps.iTypesAndDir & KUsbEpTypeBulk);
case KUsbEpTypeInterrupt:
return (iCaps.iTypesAndDir & KUsbEpTypeInterrupt);
default:
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: invalid EP type: %d", aType));
return 0;
}
}
TInt TUsbcPhysicalEndpoint::DirAvailable(TUint aDir) const
{
__KTRACE_OPT(KUSB, Kern::Printf("TUsbcPhysicalEndpoint::DirAvailable"));
switch (aDir)
{
case KUsbEpDirIn:
return (iCaps.iTypesAndDir & KUsbEpDirIn);
case KUsbEpDirOut:
return (iCaps.iTypesAndDir & KUsbEpDirOut);
default:
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: invalid EP direction: %d", aDir));
return 0;
}
}
TInt TUsbcPhysicalEndpoint::EndpointSuitable(const TUsbcEndpointInfo* aEpInfo, TInt aIfcNumber) const
{
__KTRACE_OPT(KUSB, Kern::Printf("TUsbcPhysicalEndpoint::EndpointSuitable"));
__KTRACE_OPT(KUSB, Kern::Printf(" looking for EP: type=0x%x dir=0x%x size=%d (ifc_num=%d)",
aEpInfo->iType, aEpInfo->iDir, aEpInfo->iSize, aIfcNumber));
if (iSettingReserve)
{
__KTRACE_OPT(KUSB, Kern::Printf(" -> setting conflict"));
return 0;
}
// (aIfcNumber == -1) means the ep is for a new default interface setting
else if (iIfcNumber && (*iIfcNumber != aIfcNumber))
{
// If this endpoint has already been claimed (iIfcNumber != NULL),
// but by a different interface(-set) than the currently looking one
// (*iIfcNumber != aIfcNumber), then it's not available.
// This works because we can assign the same physical endpoint
// to different alternate settings of the *same* interface, and
// because we check for available endpoints for every alternate setting
// as a whole.
__KTRACE_OPT(KUSB, Kern::Printf(" -> ifc conflict"));
return 0;
}
else if (!TypeAvailable(aEpInfo->iType))
{
__KTRACE_OPT(KUSB, Kern::Printf(" -> type conflict"));
return 0;
}
else if (!DirAvailable(aEpInfo->iDir))
{
__KTRACE_OPT(KUSB, Kern::Printf(" -> direction conflict"));
return 0;
}
else if (!(iCaps.iSizes & PacketSize2Mask(aEpInfo->iSize)) && !(iCaps.iSizes & KUsbEpSizeCont))
{
__KTRACE_OPT(KUSB, Kern::Printf(" -> size conflict"));
return 0;
}
else
return 1;
}
TUsbcPhysicalEndpoint::~TUsbcPhysicalEndpoint()
{
__KTRACE_OPT(KUSB, Kern::Printf("TUsbcPhysicalEndpoint::~TUsbcPhysicalEndpoint()"));
iLEndpoint = NULL;
}
TUsbcLogicalEndpoint::TUsbcLogicalEndpoint(DUsbClientController* aController, TUint aEndpointNum,
const TUsbcEndpointInfo& aEpInfo, TUsbcInterface* aInterface,
TUsbcPhysicalEndpoint* aPEndpoint)
: iController(aController), iLEndpointNum(aEndpointNum), iInfo(aEpInfo), iInterface(aInterface),
iPEndpoint(aPEndpoint)
{
__KTRACE_OPT(KUSB, Kern::Printf("TUsbcLogicalEndpoint::TUsbcLogicalEndpoint()"));
// Adjust FS/HS endpoint sizes
if (iInfo.AdjustEpSizes(iEpSize_Fs, iEpSize_Hs) != KErrNone)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Unknown endpoint type: %d", iInfo.iType));
}
__KTRACE_OPT(KUSB, Kern::Printf(" Now set: iEpSize_Fs=%d iEpSize_Hs=%d (iInfo.iSize=%d)",
iEpSize_Fs, iEpSize_Hs, iInfo.iSize));
// Adjust HS polling interval
if (iInfo.AdjustPollInterval() != KErrNone)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Unknown ep type (%d) or invalid interval value (%d)",
iInfo.iType, iInfo.iInterval));
}
__KTRACE_OPT(KUSB, Kern::Printf(" Now set: iInfo.iInterval=%d iInfo.iInterval_Hs=%d",
iInfo.iInterval, iInfo.iInterval_Hs));
// Additional transactions requested on a non High Bandwidth ep?
if ((iInfo.iTransactions > 0) && !aPEndpoint->iCaps.iHighBandwidth)
{
__KTRACE_OPT(KPANIC,
Kern::Printf(" Warning: Additional transactions requested but not a High Bandwidth ep"));
}
}
TUsbcLogicalEndpoint::~TUsbcLogicalEndpoint()
{
__KTRACE_OPT(KUSB, Kern::Printf("TUsbcLogicalEndpoint::~TUsbcLogicalEndpoint: #%d", iLEndpointNum));
// If the real endpoint this endpoint points to is also used by
// any other logical endpoint in any other setting of this interface
// then we leave the real endpoint marked as used. Otherwise we mark
// it as available (set its ifc number pointer to NULL).
const TInt n = iInterface->iInterfaceSet->iInterfaces.Count();
for (TInt i = 0; i < n; ++i)
{
const TUsbcInterface* const ifc = iInterface->iInterfaceSet->iInterfaces[i];
const TInt m = ifc->iEndpoints.Count();
for (TInt j = 0; j < m; ++j)
{
const TUsbcLogicalEndpoint* const ep = ifc->iEndpoints[j];
if ((ep->iPEndpoint == iPEndpoint) && (ep != this))
{
__KTRACE_OPT(KUSB, Kern::Printf(" Physical endpoint still in use -> we leave it as is"));
return;
}
}
}
__KTRACE_OPT(KUSB, Kern::Printf(" Closing DMA channel"));
const TInt idx = iController->EpAddr2Idx(iPEndpoint->iEndpointAddr);
// If the endpoint doesn't support DMA (now or ever) the next operation will be a no-op.
iController->CloseDmaChannel(idx);
__KTRACE_OPT(KUSB, Kern::Printf(" Setting physical ep 0x%02x ifc number to NULL (was %d)",
iPEndpoint->iEndpointAddr, *iPEndpoint->iIfcNumber));
iPEndpoint->iIfcNumber = NULL;
}
TUsbcInterface::TUsbcInterface(TUsbcInterfaceSet* aIfcSet, TUint8 aSetting, TBool aNoEp0Requests)
: iEndpoints(2), iInterfaceSet(aIfcSet), iSettingCode(aSetting), iNoEp0Requests(aNoEp0Requests)
{
__KTRACE_OPT(KUSB, Kern::Printf("TUsbcInterface::TUsbcInterface()"));
}
TUsbcInterface::~TUsbcInterface()
{
__KTRACE_OPT(KUSB, Kern::Printf("TUsbcInterface::~TUsbcInterface()"));
iEndpoints.ResetAndDestroy();
}
TUsbcInterfaceSet::TUsbcInterfaceSet(const DBase* aClientId, TUint8 aIfcNum)
: iInterfaces(2), iClientId(aClientId), iInterfaceNumber(aIfcNum), iCurrentInterface(0)
{
__KTRACE_OPT(KUSB, Kern::Printf("TUsbcInterfaceSet::TUsbcInterfaceSet()"));
}
TUsbcInterfaceSet::~TUsbcInterfaceSet()
{
__KTRACE_OPT(KUSB, Kern::Printf("TUsbcInterfaceSet::~TUsbcInterfaceSet()"));
iInterfaces.ResetAndDestroy();
}
TUsbcConfiguration::TUsbcConfiguration(TUint8 aConfigVal)
: iInterfaceSets(1), iConfigValue(aConfigVal) // iInterfaceSets(1): granularity
{
__KTRACE_OPT(KUSB, Kern::Printf("TUsbcConfiguration::TUsbcConfiguration()"));
}
TUsbcConfiguration::~TUsbcConfiguration()
{
__KTRACE_OPT(KUSB, Kern::Printf("TUsbcConfiguration::~TUsbcConfiguration()"));
iInterfaceSets.ResetAndDestroy();
}
_LIT(KDriverName, "Usbcc");
DUsbcPowerHandler::DUsbcPowerHandler(DUsbClientController* aController)
: DPowerHandler(KDriverName), iController(aController)
{}
void DUsbcPowerHandler::PowerUp()
{
if (iController)
iController->iPowerUpDfc.Enque();
}
void DUsbcPowerHandler::PowerDown(TPowerState)
{
if (iController)
iController->iPowerDownDfc.Enque();
}
// -eof-