|
1 /* |
|
2 * Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies). |
|
3 * All rights reserved. |
|
4 * This component and the accompanying materials are made available |
|
5 * under the terms of the License "Eclipse Public License v1.0" |
|
6 * which accompanies this distribution, and is available |
|
7 * at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
8 * |
|
9 * Initial Contributors: |
|
10 * Nokia Corporation - initial contribution. |
|
11 * |
|
12 * Contributors: |
|
13 * |
|
14 * Description: |
|
15 * |
|
16 */ |
|
17 |
|
18 |
|
19 #include <bigint.h> |
|
20 #include <e32std.h> |
|
21 #include <euserext.h> |
|
22 #include <securityerr.h> |
|
23 #include "words.h" |
|
24 #include "algorithms.h" |
|
25 #include "windowslider.h" |
|
26 #include "stackinteger.h" |
|
27 #include "mont.h" |
|
28 |
|
29 /** |
|
30 * Creates a new buffer containing the big-endian binary representation of this |
|
31 * integer. |
|
32 * |
|
33 * Note that it does not support the exporting of negative integers. |
|
34 * |
|
35 * @return The new buffer. |
|
36 * |
|
37 * @leave KErrNegativeExportNotSupported If this instance is a negative integer. |
|
38 * |
|
39 * @publishedPartner |
|
40 * @released |
|
41 */ |
|
42 EXPORT_C HBufC8* TInteger::BufferLC() const |
|
43 { |
|
44 if(IsNegative()) |
|
45 { |
|
46 User::Leave(KErrNegativeExportNotSupported); |
|
47 } |
|
48 TUint bytes = ByteCount(); |
|
49 HBufC8* buf = HBufC8::NewMaxLC(bytes); |
|
50 TUint8* bufPtr = (TUint8*)(buf->Ptr()); |
|
51 TUint8* regPtr = (TUint8*)Ptr(); |
|
52 |
|
53 // we internally store the number little endian, as a string we want it big |
|
54 // endian |
|
55 for(TUint i=0,j=bytes-1; i<bytes; ) |
|
56 { |
|
57 bufPtr[i++] = regPtr[j--]; |
|
58 } |
|
59 return buf; |
|
60 } |
|
61 |
|
62 EXPORT_C HBufC8* TInteger::BufferWithNoTruncationLC() const |
|
63 { |
|
64 if(IsNegative()) |
|
65 { |
|
66 User::Leave(KErrNegativeExportNotSupported); |
|
67 } |
|
68 |
|
69 TUint wordCount = Size(); |
|
70 TUint bytes = (wordCount)*WORD_SIZE; |
|
71 |
|
72 HBufC8* buf = HBufC8::NewMaxLC(bytes); |
|
73 TUint8* bufPtr = (TUint8*)(buf->Ptr()); |
|
74 TUint8* regPtr = (TUint8*)Ptr(); |
|
75 for(TUint i=0,j=bytes-1; i<bytes; ) |
|
76 { |
|
77 bufPtr[i++] = regPtr[j--]; |
|
78 } |
|
79 |
|
80 return buf; |
|
81 } |
|
82 |
|
83 /** |
|
84 * Gets the number of words required to represent this RInteger. |
|
85 * |
|
86 * @return The size of the integer in words. |
|
87 * |
|
88 * @publishedPartner |
|
89 * @released |
|
90 */ |
|
91 EXPORT_C TUint TInteger::WordCount() const |
|
92 { |
|
93 return CountWords(Ptr(), Size()); |
|
94 } |
|
95 |
|
96 /** |
|
97 * Gets the number of bytes required to represent this RInteger. |
|
98 * |
|
99 * @return The size of the integer in bytes. |
|
100 * |
|
101 * @publishedPartner |
|
102 * @released |
|
103 */ |
|
104 EXPORT_C TUint TInteger::ByteCount() const |
|
105 { |
|
106 TUint wordCount = WordCount(); |
|
107 if(wordCount) |
|
108 { |
|
109 return (wordCount-1)*WORD_SIZE + BytePrecision((Ptr())[wordCount-1]); |
|
110 } |
|
111 else |
|
112 { |
|
113 return 0; |
|
114 } |
|
115 } |
|
116 |
|
117 /** |
|
118 * Get the number of bits required to represent this RInteger. |
|
119 * |
|
120 * @return The size of the integer in bits. |
|
121 * |
|
122 * @publishedPartner |
|
123 * @released |
|
124 */ |
|
125 EXPORT_C TUint TInteger::BitCount() const |
|
126 { |
|
127 TUint wordCount = WordCount(); |
|
128 if(wordCount) |
|
129 { |
|
130 return (wordCount-1)*WORD_BITS + BitPrecision(Ptr()[wordCount-1]); |
|
131 } |
|
132 else |
|
133 { |
|
134 return 0; |
|
135 } |
|
136 } |
|
137 |
|
138 |
|
139 //These 3 declarations instantiate a constant 0, 1, 2 for ease of use and |
|
140 //quick construction elsewhere in the code. Note that the functions |
|
141 //returning references to this static data return const references as you can't |
|
142 //modify the ROM ;) |
|
143 //word 0: Size of storage in words |
|
144 //word 1: Pointer to storage |
|
145 //word 2: LSW of storage |
|
146 //word 3: MSW of storage |
|
147 //Note that the flag bits in word 1 (Ptr()) are zero in the case of a positive |
|
148 //stack based integer (SignBit == 0, IsHeapBasedBit == 0) |
|
149 const TUint KBigintZero[4] = {2, (TUint)(KBigintZero+2), 0, 0}; |
|
150 const TUint KBigintOne[4] = {2, (TUint)(KBigintOne+2), 1, 0}; |
|
151 const TUint KBigintTwo[4] = {2, (TUint)(KBigintTwo+2), 2, 0}; |
|
152 |
|
153 /** |
|
154 * Gets the TInteger that represents zero |
|
155 * |
|
156 * @return The TInteger representing zero |
|
157 */ |
|
158 EXPORT_C const TInteger& TInteger::Zero(void) |
|
159 { |
|
160 return *reinterpret_cast<const TStackInteger64*>(KBigintZero); |
|
161 } |
|
162 |
|
163 /** |
|
164 * Gets the TInteger that represents one |
|
165 * |
|
166 * @return The TInteger representing one |
|
167 */ |
|
168 EXPORT_C const TInteger& TInteger::One(void) |
|
169 { |
|
170 return *reinterpret_cast<const TStackInteger64*>(KBigintOne); |
|
171 } |
|
172 |
|
173 /** |
|
174 * Gets the TInteger that represents two |
|
175 * |
|
176 * @return The TInteger representing two |
|
177 */ |
|
178 EXPORT_C const TInteger& TInteger::Two(void) |
|
179 { |
|
180 return *reinterpret_cast<const TStackInteger64*>(KBigintTwo); |
|
181 } |
|
182 |
|
183 EXPORT_C RInteger TInteger::PlusL(const TInteger& aOperand) const |
|
184 { |
|
185 RInteger sum; |
|
186 if (NotNegative()) |
|
187 { |
|
188 if (aOperand.NotNegative()) |
|
189 sum = PositiveAddL(*this, aOperand); |
|
190 else |
|
191 sum = PositiveSubtractL(*this, aOperand); |
|
192 } |
|
193 else |
|
194 { |
|
195 if (aOperand.NotNegative()) |
|
196 sum = PositiveSubtractL(aOperand, *this); |
|
197 else |
|
198 { |
|
199 sum = PositiveAddL(*this, aOperand); |
|
200 sum.SetSign(TInteger::ENegative); |
|
201 } |
|
202 } |
|
203 return sum; |
|
204 } |
|
205 |
|
206 EXPORT_C RInteger TInteger::MinusL(const TInteger& aOperand) const |
|
207 { |
|
208 RInteger diff; |
|
209 if (NotNegative()) |
|
210 { |
|
211 if (aOperand.NotNegative()) |
|
212 diff = PositiveSubtractL(*this, aOperand); |
|
213 else |
|
214 diff = PositiveAddL(*this, aOperand); |
|
215 } |
|
216 else |
|
217 { |
|
218 if (aOperand.NotNegative()) |
|
219 { |
|
220 diff = PositiveAddL(*this, aOperand); |
|
221 diff.SetSign(TInteger::ENegative); |
|
222 } |
|
223 else |
|
224 diff = PositiveSubtractL(aOperand, *this); |
|
225 } |
|
226 return diff; |
|
227 } |
|
228 |
|
229 EXPORT_C RInteger TInteger::TimesL(const TInteger& aOperand) const |
|
230 { |
|
231 RInteger product = PositiveMultiplyL(*this, aOperand); |
|
232 |
|
233 if (NotNegative() != aOperand.NotNegative()) |
|
234 { |
|
235 product.Negate(); |
|
236 } |
|
237 return product; |
|
238 } |
|
239 |
|
240 EXPORT_C RInteger TInteger::DividedByL(const TInteger& aOperand) const |
|
241 { |
|
242 RInteger quotient; |
|
243 RInteger remainder; |
|
244 DivideL(remainder, quotient, *this, aOperand); |
|
245 remainder.Close(); |
|
246 return quotient; |
|
247 } |
|
248 |
|
249 EXPORT_C RInteger TInteger::DividedByL(TUint aOperand) const |
|
250 { |
|
251 TUint remainder; |
|
252 RInteger quotient; |
|
253 DivideL(remainder, quotient, *this, aOperand); |
|
254 return quotient; |
|
255 } |
|
256 |
|
257 EXPORT_C RInteger TInteger::ModuloL(const TInteger& aOperand) const |
|
258 { |
|
259 RInteger remainder; |
|
260 RInteger quotient; |
|
261 DivideL(remainder, quotient, *this, aOperand); |
|
262 quotient.Close(); |
|
263 return remainder; |
|
264 } |
|
265 |
|
266 EXPORT_C TUint TInteger::ModuloL(TUint aOperand) const |
|
267 { |
|
268 if(!aOperand) |
|
269 { |
|
270 User::Leave(KErrDivideByZero); |
|
271 } |
|
272 return Modulo(*this, aOperand); |
|
273 } |
|
274 |
|
275 EXPORT_C RInteger TInteger::SquaredL() const |
|
276 { |
|
277 //PositiveMultiplyL optimises for the squaring case already |
|
278 //Any number squared is positive, no need for negative handling in TimesL |
|
279 return PositiveMultiplyL(*this, *this); |
|
280 } |
|
281 |
|
282 EXPORT_C RInteger TInteger::ExponentiateL(const TInteger& aExponent) const |
|
283 { |
|
284 //See HAC 14.85 |
|
285 |
|
286 // 1.1 Precomputation |
|
287 // g1 <- g |
|
288 // g2 <- g^2 |
|
289 RInteger g2 = SquaredL(); |
|
290 CleanupStack::PushL(g2); |
|
291 RInteger g1 = RInteger::NewL(*this); |
|
292 CleanupStack::PushL(g1); |
|
293 TWindowSlider slider(aExponent); |
|
294 |
|
295 // 1.2 |
|
296 // For i from 1 to (2^(k-1) -1) do g2i+1 <- g2i-1 * g2 |
|
297 TUint count = (1 << (slider.WindowSize()-1)) - 1; //2^(k-1) -1 |
|
298 RRArray<RInteger> powerArray(count+1); //+1 because we append g1 |
|
299 User::LeaveIfError(powerArray.Append(g1)); |
|
300 CleanupStack::Pop(); //g1 |
|
301 CleanupClosePushL(powerArray); |
|
302 for(TUint k=1; k <= count; k++) |
|
303 { |
|
304 RInteger g2iplus1 = g2.TimesL(powerArray[k-1]); |
|
305 //This append can't fail as the granularity is set high enough |
|
306 //plus we've already called Append once which will alloc to the |
|
307 //set granularity |
|
308 powerArray.Append(g2iplus1); |
|
309 } |
|
310 |
|
311 // 2 A <- 1, i <- t |
|
312 RInteger A = RInteger::NewL(One()); |
|
313 CleanupStack::PushL(A); |
|
314 TInt i = aExponent.BitCount() - 1; |
|
315 |
|
316 // 3 While i>=0 do: |
|
317 while( i>=0 ) |
|
318 { |
|
319 // 3.1 If ei == 0 then A <- A^2 |
|
320 if(!aExponent.Bit(i)) |
|
321 { |
|
322 A *= A; |
|
323 i--; |
|
324 } |
|
325 // 3.2 Find longest bitstring ei,ei-1,...,el s.t. i-l+1<=k and el==1 |
|
326 // and do: |
|
327 // A <- (A^2^(i-l+1)) * g[the index indicated by the bitstring value] |
|
328 else |
|
329 { |
|
330 slider.FindNextWindow(i); |
|
331 assert(slider.Length() >= 1); |
|
332 for(TUint j=0; j<slider.Length(); j++) |
|
333 { |
|
334 A *= A; |
|
335 } |
|
336 A *= powerArray[slider.Value()>>1]; |
|
337 i -= slider.Length(); |
|
338 } |
|
339 } |
|
340 CleanupStack::Pop(&A); |
|
341 CleanupStack::PopAndDestroy(2, &g2); //powerArray, g2 |
|
342 return A; |
|
343 } |
|
344 |
|
345 EXPORT_C RInteger TInteger::ModularMultiplyL(const TInteger& aA, const TInteger& aB, |
|
346 const TInteger& aMod) |
|
347 { |
|
348 RInteger product = aA.TimesL(aB); |
|
349 CleanupStack::PushL(product); |
|
350 RInteger reduced = product.ModuloL(aMod); |
|
351 CleanupStack::PopAndDestroy(&product); |
|
352 return reduced; |
|
353 } |
|
354 |
|
355 EXPORT_C RInteger TInteger::ModularExponentiateL(const TInteger& aBase, |
|
356 const TInteger& aExp, const TInteger& aMod) |
|
357 { |
|
358 CMontgomeryStructure* mont = CMontgomeryStructure::NewLC(aMod); |
|
359 RInteger result = RInteger::NewL(mont->ExponentiateL(aBase, aExp)); |
|
360 CleanupStack::PopAndDestroy(mont); |
|
361 return result; |
|
362 } |
|
363 |
|
364 EXPORT_C RInteger TInteger::GCDL(const TInteger& aOperand) const |
|
365 { |
|
366 //Binary GCD algorithm -- see HAC 14.4.1 |
|
367 //with a slight variation -- our g counts shifts rather than actually |
|
368 //shifting. We then do one shift at the end. |
|
369 assert(NotNegative()); |
|
370 assert(aOperand.NotNegative()); |
|
371 |
|
372 RInteger x = RInteger::NewL(*this); |
|
373 CleanupStack::PushL(x); |
|
374 RInteger y = RInteger::NewL(aOperand); |
|
375 CleanupStack::PushL(y); |
|
376 |
|
377 // 1 Ensure x >= y |
|
378 if( x < y ) |
|
379 { |
|
380 TClassSwap(x, y); |
|
381 } |
|
382 |
|
383 TUint g = 0; |
|
384 // 2 while x and y even x <- x/2, y <- y/2 |
|
385 while( x.IsEven() && y.IsEven() ) |
|
386 { |
|
387 x >>= 1; |
|
388 y >>= 1; |
|
389 ++g; |
|
390 } |
|
391 // 3 while x != 0 |
|
392 while( x.NotZero() ) |
|
393 { |
|
394 // 3.1 while x even x <- x/2 |
|
395 while( x.IsEven() ) |
|
396 { |
|
397 x >>= 1; |
|
398 } |
|
399 // 3.2 while y even y <- y/2 |
|
400 while( y.IsEven() ) |
|
401 { |
|
402 y >>= 1; |
|
403 } |
|
404 // 3.3 t <- abs(x-y)/2 |
|
405 RInteger t = x.MinusL(y); |
|
406 t >>= 1; |
|
407 t.SetSign(TInteger::EPositive); |
|
408 |
|
409 // 3.4 If x>=y then x <- t else y <- t |
|
410 if( x >= y ) |
|
411 { |
|
412 x.Set(t); |
|
413 } |
|
414 else |
|
415 { |
|
416 y.Set(t); |
|
417 } |
|
418 } |
|
419 |
|
420 // 4 Return (g*y) (equiv to y<<=g as our g was counting shifts not actually |
|
421 //shifting) |
|
422 y <<= g; |
|
423 CleanupStack::Pop(&y); |
|
424 CleanupStack::PopAndDestroy(&x); |
|
425 return y; |
|
426 } |
|
427 |
|
428 EXPORT_C RInteger TInteger::InverseModL(const TInteger& aMod) const |
|
429 { |
|
430 assert(aMod.NotNegative()); |
|
431 |
|
432 RInteger result; |
|
433 if(IsNegative() || *this>=aMod) |
|
434 { |
|
435 RInteger temp = ModuloL(aMod); |
|
436 CleanupClosePushL(temp); |
|
437 result = temp.InverseModL(aMod); |
|
438 CleanupStack::PopAndDestroy(&temp); |
|
439 return result; |
|
440 } |
|
441 |
|
442 if(aMod.IsEven()) |
|
443 { |
|
444 if( !aMod || IsEven() ) |
|
445 { |
|
446 return RInteger::NewL(Zero()); |
|
447 } |
|
448 if( *this == One() ) |
|
449 { |
|
450 return RInteger::NewL(One()); |
|
451 } |
|
452 RInteger u = aMod.InverseModL(*this); |
|
453 CleanupClosePushL(u); |
|
454 if(!u) |
|
455 { |
|
456 result = RInteger::NewL(Zero()); |
|
457 } |
|
458 else |
|
459 { |
|
460 //calculates (aMod*(*this-u)+1)/(*this) |
|
461 result = MinusL(u); |
|
462 CleanupClosePushL(result); |
|
463 result *= aMod; |
|
464 ++result; |
|
465 result /= *this; |
|
466 CleanupStack::Pop(&result); |
|
467 } |
|
468 CleanupStack::PopAndDestroy(&u); |
|
469 return result; |
|
470 } |
|
471 |
|
472 result = RInteger::NewEmptyL(aMod.Size()); |
|
473 CleanupClosePushL(result); |
|
474 RInteger workspace = RInteger::NewEmptyL(aMod.Size() * 4); |
|
475 TUint k = AlmostInverse(result.Ptr(), workspace.Ptr(), Ptr(), Size(), |
|
476 aMod.Ptr(), aMod.Size()); |
|
477 DivideByPower2Mod(result.Ptr(), result.Ptr(), k, aMod.Ptr(), aMod.Size()); |
|
478 workspace.Close(); |
|
479 CleanupStack::Pop(&result); |
|
480 |
|
481 return result; |
|
482 } |
|
483 |
|
484 EXPORT_C TInteger& TInteger::operator+=(const TInteger& aOperand) |
|
485 { |
|
486 this->Set(PlusL(aOperand)); |
|
487 return *this; |
|
488 } |
|
489 |
|
490 EXPORT_C TInteger& TInteger::operator-=(const TInteger& aOperand) |
|
491 { |
|
492 this->Set(MinusL(aOperand)); |
|
493 return *this; |
|
494 } |
|
495 |
|
496 EXPORT_C TInteger& TInteger::operator*=(const TInteger& aOperand) |
|
497 { |
|
498 this->Set(TimesL(aOperand)); |
|
499 return *this; |
|
500 } |
|
501 |
|
502 EXPORT_C TInteger& TInteger::operator/=(const TInteger& aOperand) |
|
503 { |
|
504 this->Set(DividedByL(aOperand)); |
|
505 return *this; |
|
506 } |
|
507 |
|
508 EXPORT_C TInteger& TInteger::operator%=(const TInteger& aOperand) |
|
509 { |
|
510 this->Set(ModuloL(aOperand)); |
|
511 return *this; |
|
512 } |
|
513 |
|
514 EXPORT_C TInteger& TInteger::operator+=(TInt aOperand) |
|
515 { |
|
516 TStackInteger64 operand(aOperand); |
|
517 *this += operand; |
|
518 return *this; |
|
519 } |
|
520 |
|
521 EXPORT_C TInteger& TInteger::operator-=(TInt aOperand) |
|
522 { |
|
523 TStackInteger64 operand(aOperand); |
|
524 *this -= operand; |
|
525 return *this; |
|
526 } |
|
527 |
|
528 EXPORT_C TInteger& TInteger::operator*=(TInt aOperand) |
|
529 { |
|
530 TStackInteger64 operand(aOperand); |
|
531 *this *= operand; |
|
532 return *this; |
|
533 } |
|
534 |
|
535 EXPORT_C TInteger& TInteger::operator/=(TInt aOperand) |
|
536 { |
|
537 TStackInteger64 operand(aOperand); |
|
538 *this /= operand; |
|
539 return *this; |
|
540 } |
|
541 |
|
542 EXPORT_C TInteger& TInteger::operator%=(TInt aOperand) |
|
543 { |
|
544 TStackInteger64 operand(aOperand); |
|
545 assert(operand.NotNegative()); |
|
546 *this %= operand; |
|
547 return *this; |
|
548 } |
|
549 |
|
550 EXPORT_C TInteger& TInteger::operator--() |
|
551 { |
|
552 if (IsNegative()) |
|
553 { |
|
554 if (Increment(Ptr(), Size())) |
|
555 { |
|
556 CleanGrowL(2*Size()); |
|
557 (Ptr())[Size()/2]=1; |
|
558 } |
|
559 } |
|
560 else |
|
561 { |
|
562 if (Decrement(Ptr(), Size())) |
|
563 { |
|
564 this->CopyL(-1); |
|
565 } |
|
566 } |
|
567 return *this; |
|
568 } |
|
569 |
|
570 EXPORT_C TInteger& TInteger::operator++() |
|
571 { |
|
572 if(NotNegative()) |
|
573 { |
|
574 if(Increment(Ptr(), Size())) |
|
575 { |
|
576 CleanGrowL(2*Size()); |
|
577 (Ptr())[Size()/2]=1; |
|
578 } |
|
579 } |
|
580 else |
|
581 { |
|
582 DecrementNoCarry(Ptr(), Size()); |
|
583 if(WordCount()==0) |
|
584 { |
|
585 this->CopyL(Zero()); |
|
586 } |
|
587 } |
|
588 return *this; |
|
589 } |
|
590 |
|
591 EXPORT_C TInteger& TInteger::operator <<=(TUint aBits) |
|
592 { |
|
593 const TUint wordCount = WordCount(); |
|
594 const TUint shiftWords = aBits / WORD_BITS; |
|
595 const TUint shiftBits = aBits % WORD_BITS; |
|
596 |
|
597 CleanGrowL(wordCount+BitsToWords(aBits)); |
|
598 ShiftWordsLeftByWords(Ptr(), wordCount + shiftWords, shiftWords); |
|
599 ShiftWordsLeftByBits(Ptr()+shiftWords, wordCount + BitsToWords(shiftBits), |
|
600 shiftBits); |
|
601 return *this; |
|
602 } |
|
603 |
|
604 EXPORT_C TInteger& TInteger::operator >>=(TUint aBits) |
|
605 { |
|
606 const TUint wordCount = WordCount(); |
|
607 const TUint shiftWords = aBits / WORD_BITS; |
|
608 const TUint shiftBits = aBits % WORD_BITS; |
|
609 |
|
610 ShiftWordsRightByWords(Ptr(), wordCount, shiftWords); |
|
611 if(wordCount > shiftWords) |
|
612 { |
|
613 ShiftWordsRightByBits(Ptr(), wordCount - shiftWords, shiftBits); |
|
614 } |
|
615 if(IsNegative() && WordCount()==0) // avoid negative 0 |
|
616 { |
|
617 SetSign(EPositive); |
|
618 } |
|
619 return *this; |
|
620 } |
|
621 |
|
622 EXPORT_C TInt TInteger::UnsignedCompare(const TInteger& aThat) const |
|
623 { |
|
624 TUint size = WordCount(); |
|
625 TUint thatSize = aThat.WordCount(); |
|
626 |
|
627 if( size == thatSize ) |
|
628 return Compare(Ptr(), aThat.Ptr(), size); |
|
629 else |
|
630 return size > thatSize ? 1 : -1; |
|
631 } |
|
632 |
|
633 EXPORT_C TInt TInteger::SignedCompare(const TInteger& aThat) const |
|
634 { |
|
635 if (NotNegative()) |
|
636 { |
|
637 if (aThat.NotNegative()) |
|
638 return UnsignedCompare(aThat); |
|
639 else |
|
640 return 1; |
|
641 } |
|
642 else |
|
643 { |
|
644 if (aThat.NotNegative()) |
|
645 return -1; |
|
646 else |
|
647 return -UnsignedCompare(aThat); |
|
648 } |
|
649 } |
|
650 |
|
651 EXPORT_C TBool TInteger::operator!() const |
|
652 { |
|
653 //Ptr()[0] is just a quick way of weeding out non-zero numbers without |
|
654 //doing a full WordCount() == 0. Very good odds that a non-zero number |
|
655 //will have a bit set in the least significant word |
|
656 return IsNegative() ? EFalse : (Ptr()[0]==0 && WordCount()==0); |
|
657 } |
|
658 |
|
659 EXPORT_C TInt TInteger::SignedCompare(TInt aInteger) const |
|
660 { |
|
661 TStackInteger64 temp(aInteger); |
|
662 return SignedCompare(temp); |
|
663 } |
|
664 |
|
665 /* TBool IsPrimeL(void) const |
|
666 * and all primality related functions are implemented in primes.cpp */ |
|
667 |
|
668 EXPORT_C TBool TInteger::Bit(TUint aBitPos) const |
|
669 { |
|
670 if( aBitPos/WORD_BITS >= Size() ) |
|
671 { |
|
672 return 0; |
|
673 } |
|
674 else |
|
675 { |
|
676 return (((Ptr())[aBitPos/WORD_BITS] >> (aBitPos % WORD_BITS)) & 1); |
|
677 } |
|
678 } |
|
679 |
|
680 EXPORT_C void TInteger::SetBit(TUint aBitPos) |
|
681 { |
|
682 if( aBitPos/WORD_BITS < Size() ) |
|
683 { |
|
684 ArraySetBit(Ptr(), aBitPos); |
|
685 } |
|
686 } |
|
687 |
|
688 EXPORT_C void TInteger::Negate() |
|
689 { |
|
690 if(!!(*this)) //don't flip sign if *this==0 |
|
691 { |
|
692 SetSign(TSign((~Sign())&KSignMask)); |
|
693 } |
|
694 } |
|
695 |
|
696 EXPORT_C TInt TInteger::ConvertToLongL(void) const |
|
697 { |
|
698 if(!IsConvertableToLong()) |
|
699 { |
|
700 User::Leave(KErrTotalLossOfPrecision); |
|
701 } |
|
702 return ConvertToLong(); |
|
703 } |
|
704 |
|
705 EXPORT_C void TInteger::CopyL(const TInteger& aInteger, TBool aAllowShrink) |
|
706 { |
|
707 if(aAllowShrink) |
|
708 { |
|
709 CleanResizeL(aInteger.Size()); |
|
710 } |
|
711 else |
|
712 { |
|
713 CleanGrowL(aInteger.Size()); |
|
714 } |
|
715 Construct(aInteger); |
|
716 } |
|
717 |
|
718 EXPORT_C void TInteger::CopyL(TInt aInteger, TBool aAllowShrink) |
|
719 { |
|
720 if(aAllowShrink) |
|
721 { |
|
722 CleanResizeL(2); |
|
723 } |
|
724 else |
|
725 { |
|
726 CleanGrowL(2); |
|
727 } |
|
728 Construct(aInteger); |
|
729 } |
|
730 |
|
731 EXPORT_C void TInteger::Set(const RInteger& aInteger) |
|
732 { |
|
733 assert(IsHeapBased()); |
|
734 Mem::FillZ(Ptr(), WordsToBytes(Size())); |
|
735 User::Free(Ptr()); |
|
736 iPtr = aInteger.iPtr; |
|
737 iSize = aInteger.iSize; |
|
738 } |
|
739 |
|
740 RInteger TInteger::PositiveAddL(const TInteger &aA, const TInteger& aB) const |
|
741 { |
|
742 RInteger sum = RInteger::NewEmptyL(CryptoMax(aA.Size(), aB.Size())); |
|
743 const word aSize = aA.Size(); |
|
744 const word bSize = aB.Size(); |
|
745 const word* const aReg = aA.Ptr(); |
|
746 const word* const bReg = aB.Ptr(); |
|
747 word* const sumReg = sum.Ptr(); |
|
748 |
|
749 word carry; |
|
750 if (aSize == bSize) |
|
751 carry = Add(sumReg, aReg, bReg, aSize); |
|
752 else if (aSize > bSize) |
|
753 { |
|
754 carry = Add(sumReg, aReg, bReg, bSize); |
|
755 CopyWords(sumReg+bSize, aReg+bSize, aSize-bSize); |
|
756 carry = Increment(sumReg+bSize, aSize-bSize, carry); |
|
757 } |
|
758 else |
|
759 { |
|
760 carry = Add(sumReg, aReg, bReg, aSize); |
|
761 CopyWords(sumReg+aSize, bReg+aSize, bSize-aSize); |
|
762 carry = Increment(sumReg+aSize, bSize-aSize, carry); |
|
763 } |
|
764 |
|
765 if (carry) |
|
766 { |
|
767 CleanupStack::PushL(sum); |
|
768 sum.CleanGrowL(2*sum.Size()); |
|
769 CleanupStack::Pop(&sum); |
|
770 sum.Ptr()[sum.Size()/2] = 1; |
|
771 } |
|
772 sum.SetSign(TInteger::EPositive); |
|
773 return sum; |
|
774 } |
|
775 |
|
776 RInteger TInteger::PositiveSubtractL(const TInteger &aA, const TInteger& aB) const |
|
777 { |
|
778 RInteger diff = RInteger::NewEmptyL(CryptoMax(aA.Size(), aB.Size())); |
|
779 unsigned aSize = aA.WordCount(); |
|
780 aSize += aSize%2; |
|
781 unsigned bSize = aB.WordCount(); |
|
782 bSize += bSize%2; |
|
783 const word* const aReg = aA.Ptr(); |
|
784 const word* const bReg = aB.Ptr(); |
|
785 word* const diffReg = diff.Ptr(); |
|
786 |
|
787 if (aSize == bSize) |
|
788 { |
|
789 if (Compare(aReg, bReg, aSize) >= 0) |
|
790 { |
|
791 Subtract(diffReg, aReg, bReg, aSize); |
|
792 diff.SetSign(TInteger::EPositive); |
|
793 } |
|
794 else |
|
795 { |
|
796 Subtract(diffReg, bReg, aReg, aSize); |
|
797 diff.SetSign(TInteger::ENegative); |
|
798 } |
|
799 } |
|
800 else if (aSize > bSize) |
|
801 { |
|
802 word borrow = Subtract(diffReg, aReg, bReg, bSize); |
|
803 CopyWords(diffReg+bSize, aReg+bSize, aSize-bSize); |
|
804 borrow = Decrement(diffReg+bSize, aSize-bSize, borrow); |
|
805 assert(!borrow); |
|
806 diff.SetSign(TInteger::EPositive); |
|
807 } |
|
808 else |
|
809 { |
|
810 word borrow = Subtract(diffReg, bReg, aReg, aSize); |
|
811 CopyWords(diffReg+aSize, bReg+aSize, bSize-aSize); |
|
812 borrow = Decrement(diffReg+aSize, bSize-aSize, borrow); |
|
813 assert(!borrow); |
|
814 diff.SetSign(TInteger::ENegative); |
|
815 } |
|
816 return diff; |
|
817 } |
|
818 |
|
819 RInteger TInteger::PositiveMultiplyL(const TInteger &aA, const TInteger &aB) const |
|
820 { |
|
821 unsigned aSize = RoundupSize(aA.WordCount()); |
|
822 unsigned bSize = RoundupSize(aB.WordCount()); |
|
823 |
|
824 RInteger product = RInteger::NewEmptyL(aSize+bSize); |
|
825 CleanupClosePushL(product); |
|
826 |
|
827 RInteger workspace = RInteger::NewEmptyL(aSize + bSize); |
|
828 AsymmetricMultiply(product.Ptr(), workspace.Ptr(), aA.Ptr(), aSize, aB.Ptr(), |
|
829 bSize); |
|
830 workspace.Close(); |
|
831 CleanupStack::Pop(&product); |
|
832 return product; |
|
833 } |
|
834 |
|
835 TUint TInteger::Modulo(const TInteger& aDividend, TUint aDivisor) const |
|
836 { |
|
837 assert(aDivisor); |
|
838 TUint i = aDividend.WordCount(); |
|
839 TUint remainder = 0; |
|
840 while(i--) |
|
841 { |
|
842 remainder = TUint(MAKE_DWORD(aDividend.Ptr()[i], remainder) % aDivisor); |
|
843 } |
|
844 return remainder; |
|
845 } |
|
846 |
|
847 void TInteger::PositiveDivide(TUint& aRemainder, TInteger& aQuotient, |
|
848 const TInteger& aDividend, TUint aDivisor) const |
|
849 { |
|
850 assert(aDivisor); |
|
851 |
|
852 TUint i = aDividend.WordCount(); |
|
853 assert(aQuotient.Size() >= RoundupSize(i)); |
|
854 assert(aQuotient.Sign() == TInteger::EPositive); |
|
855 aRemainder = 0; |
|
856 while(i--) |
|
857 { |
|
858 aQuotient.Ptr()[i] = |
|
859 TUint(MAKE_DWORD(aDividend.Ptr()[i], aRemainder) / aDivisor); |
|
860 aRemainder = |
|
861 TUint(MAKE_DWORD(aDividend.Ptr()[i], aRemainder) % aDivisor); |
|
862 } |
|
863 } |
|
864 |
|
865 void TInteger::DivideL(TUint& aRemainder, RInteger& aQuotient, |
|
866 const TInteger& aDividend, TUint aDivisor) const |
|
867 { |
|
868 if(!aDivisor) |
|
869 { |
|
870 User::Leave(KErrDivideByZero); |
|
871 } |
|
872 |
|
873 TUint i = aDividend.WordCount(); |
|
874 aQuotient.CleanNewL(RoundupSize(i)); |
|
875 PositiveDivide(aRemainder, aQuotient, aDividend, aDivisor); |
|
876 |
|
877 if(aDividend.NotNegative()) |
|
878 { |
|
879 aQuotient.SetSign(TInteger::EPositive); |
|
880 } |
|
881 else |
|
882 { |
|
883 aQuotient.SetSign(TInteger::ENegative); |
|
884 if(aRemainder) |
|
885 { |
|
886 --aQuotient; |
|
887 aRemainder = aDivisor = aRemainder; |
|
888 } |
|
889 } |
|
890 } |
|
891 |
|
892 void TInteger::PositiveDivideL(RInteger &aRemainder, RInteger &aQuotient, |
|
893 const TInteger &aDividend, const TInteger &aDivisor) const |
|
894 { |
|
895 unsigned dividendSize = aDividend.WordCount(); |
|
896 unsigned divisorSize = aDivisor.WordCount(); |
|
897 |
|
898 if (!divisorSize) |
|
899 { |
|
900 User::Leave(KErrDivideByZero); |
|
901 } |
|
902 |
|
903 if (aDividend.UnsignedCompare(aDivisor) == -1) |
|
904 { |
|
905 aRemainder.CreateNewL(aDividend.Size()); |
|
906 CleanupStack::PushL(aRemainder); |
|
907 aRemainder.CopyL(aDividend); //set remainder to a |
|
908 aRemainder.SetSign(TInteger::EPositive); |
|
909 aQuotient.CleanNewL(2); //Set quotient to zero |
|
910 CleanupStack::Pop(&aRemainder); |
|
911 return; |
|
912 } |
|
913 |
|
914 dividendSize += dividendSize%2; // round up to next even number |
|
915 divisorSize += divisorSize%2; |
|
916 |
|
917 aRemainder.CleanNewL(divisorSize); |
|
918 CleanupStack::PushL(aRemainder); |
|
919 aQuotient.CleanNewL(dividendSize-divisorSize+2); |
|
920 CleanupStack::PushL(aQuotient); |
|
921 |
|
922 RInteger T = RInteger::NewEmptyL(dividendSize+2*divisorSize+4); |
|
923 Divide(aRemainder.Ptr(), aQuotient.Ptr(), T.Ptr(), aDividend.Ptr(), |
|
924 dividendSize, aDivisor.Ptr(), divisorSize); |
|
925 T.Close(); |
|
926 CleanupStack::Pop(2, &aRemainder); //aQuotient, aRemainder |
|
927 } |
|
928 |
|
929 void TInteger::DivideL(RInteger& aRemainder, RInteger& aQuotient, |
|
930 const TInteger& aDividend, const TInteger& aDivisor) const |
|
931 { |
|
932 PositiveDivideL(aRemainder, aQuotient, aDividend, aDivisor); |
|
933 |
|
934 if (aDividend.IsNegative()) |
|
935 { |
|
936 aQuotient.Negate(); |
|
937 if (aRemainder.NotZero()) |
|
938 { |
|
939 --aQuotient; |
|
940 assert(aRemainder.Size() <= aDivisor.Size()); |
|
941 Subtract(aRemainder.Ptr(), aDivisor.Ptr(), aRemainder.Ptr(), |
|
942 aRemainder.Size()); |
|
943 } |
|
944 } |
|
945 |
|
946 if (aDivisor.IsNegative()) |
|
947 aQuotient.Negate(); |
|
948 } |
|
949 |
|
950 TInt TInteger::ConvertToLong(void) const |
|
951 { |
|
952 TUint value = ConvertToUnsignedLong(); |
|
953 return Sign() == EPositive ? value : -(static_cast<TInt>(value)); |
|
954 } |
|
955 |
|
956 TBool TInteger::IsConvertableToLong(void) const |
|
957 { |
|
958 if(WordCount() > 1) |
|
959 { |
|
960 return EFalse; |
|
961 } |
|
962 TUint value = (Ptr())[0]; |
|
963 if(Sign() == EPositive) |
|
964 { |
|
965 return static_cast<TInt>(value) >= 0; |
|
966 } |
|
967 else |
|
968 { |
|
969 return -(static_cast<TInt>(value)) < 0; |
|
970 } |
|
971 } |
|
972 |
|
973 void TInteger::RandomizeL(TUint aBits, TRandomAttribute aAttr) |
|
974 { |
|
975 if(!aBits) |
|
976 { |
|
977 return; |
|
978 } |
|
979 const TUint bytes = BitsToBytes(aBits); |
|
980 const TUint words = BitsToWords(aBits); |
|
981 CleanGrowL(words); |
|
982 TPtr8 buf((TUint8*)(Ptr()), bytes, WordsToBytes(Size())); |
|
983 TUint bitpos = aBits % BYTE_BITS; |
|
984 GenerateRandomBytesL(buf); |
|
985 //mask with 0 all bits above the num requested in the most significant byte |
|
986 if(bitpos) |
|
987 { |
|
988 buf[bytes-1] = TUint8( buf[bytes-1] & ((1L << bitpos) - 1) ); |
|
989 } |
|
990 //set most significant (top) bit |
|
991 if(aAttr == ETopBitSet || aAttr == ETop2BitsSet) |
|
992 { |
|
993 SetBit(aBits-1); //Set bit counts from 0 |
|
994 assert(BitCount() == aBits); |
|
995 assert(Bit(aBits-1)); |
|
996 } |
|
997 //set 2nd bit from top |
|
998 if(aAttr == ETop2BitsSet) |
|
999 { |
|
1000 SetBit(aBits-2); //Set bit counts from 0 |
|
1001 assert(BitCount() == aBits); |
|
1002 assert(Bit(aBits-1)); |
|
1003 assert(Bit(aBits-2)); |
|
1004 } |
|
1005 } |
|
1006 |
|
1007 void TInteger::RandomizeL(const TInteger& aMin, const TInteger& aMax) |
|
1008 { |
|
1009 assert(aMax > aMin); |
|
1010 assert(aMin.NotNegative()); |
|
1011 RInteger range = RInteger::NewL(aMax); |
|
1012 CleanupStack::PushL(range); |
|
1013 range -= aMin; |
|
1014 const TUint bits = range.BitCount(); |
|
1015 |
|
1016 //if we find a number < range then aMin+range < aMax |
|
1017 do |
|
1018 { |
|
1019 RandomizeL(bits, EAllBitsRandom); |
|
1020 } |
|
1021 while(*this > range); |
|
1022 |
|
1023 *this += aMin; |
|
1024 CleanupStack::PopAndDestroy(&range); |
|
1025 } |
|
1026 |
|
1027 /* void PrimeRandomizeL(TUint aBits, TRandomAttribute aAttr) |
|
1028 * and all primality related functions are implemented in primes.cpp */ |
|
1029 |
|
1030 void TInteger::CreateNewL(TUint aNewSize) |
|
1031 { |
|
1032 //should only be called on construction |
|
1033 assert(!iPtr); |
|
1034 |
|
1035 TUint newSize = RoundupSize(aNewSize); |
|
1036 SetPtr((TUint*)User::AllocL(WordsToBytes(newSize))); |
|
1037 SetSize(newSize); |
|
1038 SetHeapBased(); |
|
1039 } |
|
1040 |
|
1041 void TInteger::CleanNewL(TUint aNewSize) |
|
1042 { |
|
1043 CreateNewL(aNewSize); |
|
1044 Mem::FillZ(Ptr(), WordsToBytes(Size())); //clear integer storage |
|
1045 } |
|
1046 |
|
1047 void TInteger::CleanGrowL(TUint aNewSize) |
|
1048 { |
|
1049 assert(IsHeapBased()); |
|
1050 TUint newSize = RoundupSize(aNewSize); |
|
1051 TUint oldSize = Size(); |
|
1052 if(newSize > oldSize) |
|
1053 { |
|
1054 TUint* oldPtr = Ptr(); |
|
1055 //1) allocate new memory and set ptr and size |
|
1056 SetPtr((TUint*)User::AllocL(WordsToBytes(newSize))); |
|
1057 SetSize(newSize); |
|
1058 //2) copy old mem to new mem |
|
1059 Mem::Copy(Ptr(), oldPtr, WordsToBytes(oldSize)); |
|
1060 //3) zero all old memory |
|
1061 Mem::FillZ(oldPtr, WordsToBytes(oldSize)); |
|
1062 //4) give back old memory |
|
1063 User::Free(oldPtr); |
|
1064 //5) zero new memory from end of copy to end of growth |
|
1065 Mem::FillZ(Ptr() + oldSize, WordsToBytes(newSize-oldSize)); |
|
1066 } |
|
1067 } |
|
1068 |
|
1069 void TInteger::CleanResizeL(TUint aNewSize) |
|
1070 { |
|
1071 assert(IsHeapBased()); |
|
1072 TUint newSize = RoundupSize(aNewSize); |
|
1073 TUint oldSize = Size(); |
|
1074 if(newSize > oldSize) |
|
1075 { |
|
1076 CleanGrowL(aNewSize); |
|
1077 } |
|
1078 else if(newSize < oldSize) |
|
1079 { |
|
1080 TUint* oldPtr = Ptr(); |
|
1081 //1) zero memory above newsize |
|
1082 Mem::FillZ(oldPtr+WordsToBytes(aNewSize),WordsToBytes(oldSize-newSize)); |
|
1083 //2) ReAlloc cell. Since our newsize is less than oldsize, it is |
|
1084 //guarenteed not to move. Thus this is just freeing part of our old |
|
1085 //cell to the heap for other uses. |
|
1086 SetPtr((TUint*)User::ReAllocL(Ptr(), WordsToBytes(newSize))); |
|
1087 SetSize(newSize); |
|
1088 } |
|
1089 } |
|
1090 |
|
1091 TInteger::TInteger() : iSize(0), iPtr(0) |
|
1092 { |
|
1093 } |
|
1094 |
|
1095 void TInteger::Construct(const TDesC8& aValue) |
|
1096 { |
|
1097 assert(Size() >= BytesToWords(aValue.Size())); |
|
1098 if(aValue.Size() > 0) |
|
1099 { |
|
1100 //People write numbers with the most significant digits first (big |
|
1101 //endian) but we store our numbers in little endian. Hence we need to |
|
1102 //reverse the string by bytes. |
|
1103 |
|
1104 TUint bytes = aValue.Size(); |
|
1105 TUint8* i = (TUint8*)Ptr(); |
|
1106 TUint8* j = (TUint8*)aValue.Ptr() + bytes; |
|
1107 |
|
1108 //Swap the endianess of the number itself |
|
1109 // (msb) 01 02 03 04 05 06 (lsb) becomes -> |
|
1110 // (lsb) 06 05 04 03 02 01 (msb) |
|
1111 while( j != (TUint8*)aValue.Ptr() ) |
|
1112 { |
|
1113 *i++ = *--j; |
|
1114 } |
|
1115 Mem::FillZ((TUint8*)Ptr() + bytes, WordsToBytes(Size()) - bytes); |
|
1116 } |
|
1117 else |
|
1118 { |
|
1119 //if size is zero, we zero the whole register |
|
1120 Mem::FillZ((TUint8*)Ptr(), WordsToBytes(Size())); |
|
1121 } |
|
1122 SetSign(EPositive); |
|
1123 } |
|
1124 |
|
1125 void TInteger::Construct(const TInteger& aInteger) |
|
1126 { |
|
1127 assert(Size() >= aInteger.Size()); |
|
1128 CopyWords(Ptr(), aInteger.Ptr(), aInteger.Size()); |
|
1129 if(Size() > aInteger.Size()) |
|
1130 { |
|
1131 Mem::FillZ(Ptr()+aInteger.Size(), WordsToBytes(Size()-aInteger.Size())); |
|
1132 } |
|
1133 SetSign(aInteger.Sign()); |
|
1134 } |
|
1135 |
|
1136 void TInteger::Construct(TInt aInteger) |
|
1137 { |
|
1138 Construct((TUint)aInteger); |
|
1139 if(aInteger < 0) |
|
1140 { |
|
1141 SetSign(ENegative); |
|
1142 Ptr()[0] = -aInteger; |
|
1143 } |
|
1144 } |
|
1145 |
|
1146 void TInteger::Construct(TUint aInteger) |
|
1147 { |
|
1148 assert(Size() >= 2); |
|
1149 SetSign(EPositive); |
|
1150 Ptr()[0] = aInteger; |
|
1151 Mem::FillZ(Ptr()+1, WordsToBytes(Size()-1)); |
|
1152 } |
|
1153 |
|
1154 void TInteger::ConstructStack(TUint aWords, TUint aInteger) |
|
1155 { |
|
1156 SetPtr((TUint*)(this)+2); |
|
1157 //SetStackBased(); //Not strictly needed as stackbased is a 0 at bit 1 |
|
1158 SetSize(aWords); |
|
1159 assert(Size() >= 2); |
|
1160 Ptr()[0] = aInteger; |
|
1161 Mem::FillZ(&(Ptr()[1]), WordsToBytes(Size()-1)); |
|
1162 } |
|
1163 |
|
1164 void TInteger::ConstructStack(TUint aWords, const TInteger& aInteger) |
|
1165 { |
|
1166 SetPtr((TUint*)(this)+2); |
|
1167 //SetStackBased(); //Not strictly needed as stackbased is a 0 at bit 1 |
|
1168 SetSize(aWords); |
|
1169 assert( Size() >= RoundupSize(aInteger.WordCount()) ); |
|
1170 CopyWords(Ptr(), aInteger.Ptr(), aInteger.Size()); |
|
1171 Mem::FillZ(Ptr()+aInteger.Size(), WordsToBytes(Size()-aInteger.Size())); |
|
1172 } |