--- a/crypto/weakcrypto/source/asymmetric/dsakeys.cpp Tue Aug 31 17:00:08 2010 +0300
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,468 +0,0 @@
-/*
-* Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies).
-* All rights reserved.
-* This component and the accompanying materials are made available
-* under the terms of the License "Eclipse Public License v1.0"
-* which accompanies this distribution, and is available
-* at the URL "http://www.eclipse.org/legal/epl-v10.html".
-*
-* Initial Contributors:
-* Nokia Corporation - initial contribution.
-*
-* Contributors:
-*
-* Description:
-*
-*/
-
-
-#include <asymmetrickeys.h>
-#include <bigint.h>
-#include <random.h>
-#include <hash.h>
-#include "../common/inlines.h"
-#include "../bigint/mont.h"
-
-const TUint SHASIZE = 20;
-const TUint KMinPrimeLength = 512;
-const TUint KMaxPrimeLength = 1024;
-const TUint KPrimeLengthMultiple = 64;
-
-/* CDSAParameters */
-
-EXPORT_C const TInteger& CDSAParameters::P(void) const
- {
- return iP;
- }
-
-EXPORT_C const TInteger& CDSAParameters::Q(void) const
- {
- return iQ;
- }
-
-EXPORT_C const TInteger& CDSAParameters::G(void) const
- {
- return iG;
- }
-
-EXPORT_C CDSAParameters::~CDSAParameters(void)
- {
- iP.Close();
- iQ.Close();
- iG.Close();
- }
-
-EXPORT_C CDSAParameters* CDSAParameters::NewL(RInteger& aP, RInteger& aQ,
- RInteger& aG)
- {
- CDSAParameters* me = new (ELeave) CDSAParameters(aP, aQ, aG);
- return (me);
- }
-
-EXPORT_C TBool CDSAParameters::ValidatePrimesL(const CDSAPrimeCertificate& aCert)
- const
- {
- TBool result = EFalse;
- RInteger p;
- RInteger q;
- //Regenerate primes using aCert's seed and counter
- TUint counter = aCert.Counter();
- if(!CDSAParameters::GeneratePrimesL(aCert.Seed(), counter, p,
- P().BitCount(), q, ETrue))
- {
- return result;
- }
- //this doesn't leave, no need to push p and q
- if(p == P() && q == Q() && counter == aCert.Counter())
- {
- result = ETrue;
- }
- p.Close();
- q.Close();
- return result;
- }
-
-EXPORT_C TBool CDSAParameters::ValidPrimeLength(TUint aPrimeBits)
- {
- return (aPrimeBits >= KMinPrimeLength &&
- aPrimeBits <= KMaxPrimeLength &&
- aPrimeBits % KPrimeLengthMultiple == 0);
- }
-
-EXPORT_C CDSAParameters::CDSAParameters(RInteger& aP, RInteger& aQ,
- RInteger& aG) : iP(aP), iQ(aQ), iG(aG)
- {
- }
-
-EXPORT_C CDSAParameters::CDSAParameters(void)
- {
- }
-
-TBool CDSAParameters::GeneratePrimesL(const TDesC8& aSeed, TUint& aCounter,
- RInteger& aP, TUint aL, RInteger& aQ, TBool aUseInputCounter)
- {
- //This follows the steps in FIPS 186-2
- //See DSS Appendix 2.2
- //Note. Step 1 is performed prior to calling GeneratePrimesL, so that this
- //routine can be used for both generation and validation.
- //Step 1. Choose an arbitrary sequence of at least 160 bits and call it
- //SEED. Let g be the length of SEED in bits.
-
- if(!CDSAParameters::ValidPrimeLength(aL))
- {
- User::Leave(KErrNotSupported);
- }
-
- CSHA1* sha1 = CSHA1::NewL();
- CleanupStack::PushL(sha1);
-
- HBufC8* seedBuf = aSeed.AllocLC();
- TPtr8 seed = seedBuf->Des();
- TUint gBytes = aSeed.Size();
- //Note that the DSS's g = BytesToBits(gBytes) ie. the number of random bits
- //in the seed.
- //This function has made the assumption (for ease of computation) that g%8
- //is 0. Ie the seed is a whole number of random bytes.
- TBuf8<SHASIZE> U;
- TBuf8<SHASIZE> temp;
- const TUint n = (aL-1)/160;
- const TUint b = (aL-1)%160;
- HBufC8* Wbuf = HBufC8::NewMaxLC((n+1) * SHASIZE);
- TUint8* W = const_cast<TUint8*>(Wbuf->Ptr());
-
- U.Copy(sha1->Final(seed));
-
- //Step 2. U = SHA-1[SEED] XOR SHA-1[(SEED+1) mod 2^g]
- for(TInt i=gBytes - 1, carry=ETrue; i>=0 && carry; i--)
- {
- //!++(TUint) adds one to the current word which if it overflows to zero
- //sets carry to 1 thus letting the loop continue. It's a poor man's
- //multi-word addition. Swift eh?
- carry = !++(seed[i]);
- }
-
- temp.Copy(sha1->Final(seed));
- XorBuf(const_cast<TUint8*>(U.Ptr()), temp.Ptr(), SHASIZE);
-
- //Step 3. Form q from U by setting the most significant bit (2^159)
- //and the least significant bit to 1.
- U[0] |= 0x80;
- U[SHASIZE-1] |= 1;
-
- aQ = RInteger::NewL(U);
- CleanupStack::PushL(aQ);
-
- //Step 4. Use a robust primality testing algo to test if q is prime
- //The robust part is the calling codes problem. This will use whatever
- //random number generator you set for the thread. To attempt FIPS 186-2
- //compliance, set a FIPS 186-2 compliant RNG.
- if( !aQ.IsPrimeL() )
- {
- //Step 5. If not exit and get a new seed
- CleanupStack::PopAndDestroy(&aQ);
- CleanupStack::PopAndDestroy(Wbuf);
- CleanupStack::PopAndDestroy(seedBuf);
- CleanupStack::PopAndDestroy(sha1);
- return EFalse;
- }
-
- TUint counterEnd = aUseInputCounter ? aCounter+1 : 4096;
-
- //Step 6. Let counter = 0 and offset = 2
- //Note 1. that the DSS speaks of SEED + offset + k because they always
- //refer to a constant SEED. We update our seed as we go so the offset
- //variable has already been added to seed in the previous iterations.
- //Note 2. We've already added 1 to our seed, so the first time through this
- //the offset in DSS speak will be 2.
- for(TUint counter=0; counter < counterEnd; counter++)
- {
- //Step 7. For k=0, ..., n let
- // Vk = SHA-1[(SEED + offset + k) mod 2^g]
- //I'm storing the Vk's inside of a big W buffer.
- for(TUint k=0; k<=n; k++)
- {
- for(TInt i=gBytes-1, carry=ETrue; i>=0 && carry; i--)
- {
- carry = !++(seed[i]);
- }
- if(!aUseInputCounter || counter == aCounter)
- {
- TPtr8 Wptr(W+(n-k)*SHASIZE, gBytes);
- Wptr.Copy(sha1->Final(seed));
- }
- }
- if(!aUseInputCounter || counter == aCounter)
- {
- //Step 8. Let W be the integer... and let X = W + 2^(L-1)
- const_cast<TUint8&>((*Wbuf)[SHASIZE - 1 - b/8]) |= 0x80;
- TPtr8 Wptr(W + SHASIZE - 1 - b/8, aL/8, aL/8);
- RInteger X = RInteger::NewL(Wptr);
- CleanupStack::PushL(X);
- //Step 9. Let c = X mod 2q and set p = X - (c-1)
- RInteger twoQ = aQ.TimesL(TInteger::Two());
- CleanupStack::PushL(twoQ);
- RInteger c = X.ModuloL(twoQ);
- CleanupStack::PushL(c);
- --c;
- aP = X.MinusL(c);
- CleanupStack::PopAndDestroy(3, &X); //twoQ, c, X
- CleanupStack::PushL(aP);
-
- //Step 10 and 11: if p >= 2^(L-1) and p is prime
- if( aP.Bit(aL-1) && aP.IsPrimeL() )
- {
- aCounter = counter;
- CleanupStack::Pop(&aP);
- CleanupStack::Pop(&aQ);
- CleanupStack::PopAndDestroy(Wbuf);
- CleanupStack::PopAndDestroy(seedBuf);
- CleanupStack::PopAndDestroy(sha1);
- return ETrue;
- }
- CleanupStack::PopAndDestroy(&aP);
- }
- }
- CleanupStack::PopAndDestroy(&aQ);
- CleanupStack::PopAndDestroy(Wbuf);
- CleanupStack::PopAndDestroy(seedBuf);
- CleanupStack::PopAndDestroy(sha1);
- return EFalse;
- }
-
-/* CDSAPublicKey */
-
-EXPORT_C CDSAPublicKey* CDSAPublicKey::NewL(RInteger& aP, RInteger& aQ,
- RInteger& aG, RInteger& aY)
- {
- CDSAPublicKey* self = new(ELeave) CDSAPublicKey(aP, aQ, aG, aY);
- return self;
- }
-
-EXPORT_C CDSAPublicKey* CDSAPublicKey::NewLC(RInteger& aP, RInteger& aQ,
- RInteger& aG, RInteger& aY)
- {
- CDSAPublicKey* self = NewL(aP, aQ, aG, aY);
- CleanupStack::PushL(self);
- return self;
- }
-
-EXPORT_C const TInteger& CDSAPublicKey::Y(void) const
- {
- return iY;
- }
-
-EXPORT_C CDSAPublicKey::CDSAPublicKey(void)
- {
- }
-
-EXPORT_C CDSAPublicKey::CDSAPublicKey(RInteger& aP, RInteger& aQ, RInteger& aG,
- RInteger& aY) : CDSAParameters(aP, aQ, aG), iY(aY)
- {
- }
-
-EXPORT_C CDSAPublicKey::~CDSAPublicKey(void)
- {
- iY.Close();
- }
-
-/* CDSAPrivateKey */
-
-EXPORT_C CDSAPrivateKey* CDSAPrivateKey::NewL(RInteger& aP, RInteger& aQ,
- RInteger& aG, RInteger& aX)
- {
- CDSAPrivateKey* self = new(ELeave) CDSAPrivateKey(aP, aQ, aG, aX);
- return self;
- }
-
-EXPORT_C CDSAPrivateKey* CDSAPrivateKey::NewLC(RInteger& aP, RInteger& aQ,
- RInteger& aG, RInteger& aX)
- {
- CDSAPrivateKey* self = NewL(aP, aQ, aG, aX);
- CleanupStack::PushL(self);
- return self;
- }
-
-EXPORT_C const TInteger& CDSAPrivateKey::X(void) const
- {
- return iX;
- }
-
-CDSAPrivateKey::CDSAPrivateKey(RInteger& aP, RInteger& aQ, RInteger& aG,
- RInteger& aX) : CDSAParameters(aP, aQ, aG), iX(aX)
- {
- }
-
-EXPORT_C CDSAPrivateKey::CDSAPrivateKey(void)
- {
- }
-
-EXPORT_C CDSAPrivateKey::~CDSAPrivateKey(void)
- {
- iX.Close();
- }
-
-/* CDSAKeyPair */
-
-EXPORT_C CDSAKeyPair* CDSAKeyPair::NewL(TUint aKeyBits)
- {
- CDSAKeyPair* self = NewLC(aKeyBits);
- CleanupStack::Pop();
- return self;
- }
-
-EXPORT_C CDSAKeyPair* CDSAKeyPair::NewLC(TUint aKeyBits)
- {
- CDSAKeyPair* self = new(ELeave) CDSAKeyPair();
- CleanupStack::PushL(self);
- self->ConstructL(aKeyBits);
- return self;
- }
-
-EXPORT_C const CDSAPublicKey& CDSAKeyPair::PublicKey(void) const
- {
- return *iPublic;
- }
-
-EXPORT_C const CDSAPrivateKey& CDSAKeyPair::PrivateKey(void) const
- {
- return *iPrivate;
- }
-
-EXPORT_C CDSAKeyPair::~CDSAKeyPair(void)
- {
- delete iPublic;
- delete iPrivate;
- delete iPrimeCertificate;
- }
-
-EXPORT_C CDSAKeyPair::CDSAKeyPair(void)
- {
- }
-
-EXPORT_C const CDSAPrimeCertificate& CDSAKeyPair::PrimeCertificate(void) const
- {
- return *iPrimeCertificate;
- }
-
-void CDSAKeyPair::ConstructL(TUint aPBits)
- {
- //This is the first step of DSA prime generation. The remaining steps are
- //performed in CDSAParameters::GeneratePrimesL
- //Step 1. Choose an arbitrary sequence of at least 160 bits and call it
- //SEED. Let g be the length of SEED in bits.
- TBuf8<SHASIZE> seed(SHASIZE);
- TUint c;
- RInteger p;
- RInteger q;
- do
- {
- GenerateRandomBytesL(seed);
- }
- while(!CDSAParameters::GeneratePrimesL(seed, c, p, aPBits, q));
- //Double PushL will not fail as GeneratePrimesL uses the CleanupStack
- //(at least one push and pop ;)
- CleanupStack::PushL(p);
- CleanupStack::PushL(q);
- iPrimeCertificate = CDSAPrimeCertificate::NewL(seed, c);
-
- CMontgomeryStructure* montP = CMontgomeryStructure::NewLC(p);
-
- --p;
-
- // e = (p-1)/q
- RInteger e = p.DividedByL(q);
- CleanupStack::PushL(e);
-
- --p; //now it's p-2 :)
-
- RInteger h;
- const TInteger* g = 0;
- do
- {
- // find a random h | 1 < h < p-1
- h = RInteger::NewRandomL(TInteger::Two(), p);
- CleanupStack::PushL(h);
- // g = h^e mod p
- g = &(montP->ExponentiateL(h, e));
- CleanupStack::PopAndDestroy(&h);
- }
- while( *g <= TInteger::One() );
- CleanupStack::PopAndDestroy(&e);
-
- ++p; //reincrement p to original value
- ++p;
-
- RInteger g1 = RInteger::NewL(*g); //take a copy of montP's g
- CleanupStack::PushL(g1);
- RInteger p1 = RInteger::NewL(p);
- CleanupStack::PushL(p1);
- RInteger q1 = RInteger::NewL(q);
- CleanupStack::PushL(q1);
-
- --q;
- // select random x | 0 < x < q
- RInteger x = RInteger::NewRandomL(TInteger::One(), q);
- CleanupStack::PushL(x);
- ++q;
-
- iPrivate = CDSAPrivateKey::NewL(p1, q1, g1, x);
- CleanupStack::Pop(4, &g1); //x,q1,p1,g1 -- all owned by iPrivate
-
- RInteger y = RInteger::NewL(montP->ExponentiateL(*g, iPrivate->X()));
- CleanupStack::PushL(y);
- RInteger g2 = RInteger::NewL(iPrivate->G());
- CleanupStack::PushL(g2);
- iPublic = CDSAPublicKey::NewL(p, q, g2, y);
- CleanupStack::Pop(2, &y); //g2, y
- CleanupStack::PopAndDestroy(montP);
- CleanupStack::Pop(2, &p); //q, p
- }
-
-
-/* CDSAPrimeCertificate */
-
-EXPORT_C CDSAPrimeCertificate* CDSAPrimeCertificate::NewL(const TDesC8& aSeed,
- TUint aCounter)
- {
- CDSAPrimeCertificate* self = NewLC(aSeed, aCounter);
- CleanupStack::Pop();
- return self;
- }
-
-EXPORT_C CDSAPrimeCertificate* CDSAPrimeCertificate::NewLC(const TDesC8& aSeed,
- TUint aCounter)
- {
- CDSAPrimeCertificate* self = new(ELeave) CDSAPrimeCertificate(aCounter);
- CleanupStack::PushL(self);
- self->ConstructL(aSeed);
- return self;
- }
-
-EXPORT_C const TDesC8& CDSAPrimeCertificate::Seed(void) const
- {
- return *iSeed;
- }
-
-EXPORT_C TUint CDSAPrimeCertificate::Counter(void) const
- {
- return iCounter;
- }
-
-EXPORT_C CDSAPrimeCertificate::~CDSAPrimeCertificate(void)
- {
- delete const_cast<HBufC8*>(iSeed);
- }
-
-void CDSAPrimeCertificate::ConstructL(const TDesC8& aSeed)
- {
- iSeed = aSeed.AllocL();
- }
-
-EXPORT_C CDSAPrimeCertificate::CDSAPrimeCertificate(TUint aCounter)
- : iCounter(aCounter)
- {
- }
-
-EXPORT_C CDSAPrimeCertificate::CDSAPrimeCertificate(void)
- {
- }