--- a/crypto/weakcrypto/source/bigint/algorithms.cpp Tue Aug 31 17:00:08 2010 +0300
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,1160 +0,0 @@
-/*
-* Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies).
-* All rights reserved.
-* This component and the accompanying materials are made available
-* under the terms of the License "Eclipse Public License v1.0"
-* which accompanies this distribution, and is available
-* at the URL "http://www.eclipse.org/legal/epl-v10.html".
-*
-* Initial Contributors:
-* Nokia Corporation - initial contribution.
-*
-* Contributors:
-*
-* Description:
-*
-*/
-
-
-#include "words.h"
-#include "algorithms.h"
-
-word Add(word *C, const word *A, const word *B, unsigned int N)
-{
- assert (N%2 == 0);
- word carry = 0;
- for (unsigned int i = 0; i < N; i+=2)
- {
- dword u = (dword) carry + A[i] + B[i];
- C[i] = LOW_WORD(u);
- u = (dword) HIGH_WORD(u) + A[i+1] + B[i+1];
- C[i+1] = LOW_WORD(u);
- carry = HIGH_WORD(u);
- }
- return carry;
-}
-
-word Subtract(word *C, const word *A, const word *B, unsigned int N)
-{
- assert (N%2 == 0);
- word borrow=0;
- for (unsigned i = 0; i < N; i+=2)
- {
- dword u = (dword) A[i] - B[i] - borrow;
- C[i] = LOW_WORD(u);
- u = (dword) A[i+1] - B[i+1] - (word)(0-HIGH_WORD(u));
- C[i+1] = LOW_WORD(u);
- borrow = 0-HIGH_WORD(u);
- }
- return borrow;
-}
-
-int Compare(const word *A, const word *B, unsigned int N)
-{
- while (N--)
- if (A[N] > B[N])
- return 1;
- else if (A[N] < B[N])
- return -1;
-
- return 0;
-}
-
-// It is the job of the calling code to ensure that this won't carry.
-// If you aren't sure, use the next version that will tell you if you need to
-// grow your integer.
-// Having two of these creates ever so slightly more code but avoids having
-// ifdefs all over the rest of the code checking the following type stuff which
-// causes warnings in certain compilers about unused parameters in release
-// builds. We can't have that can we!
-/*
-Allows avoid this all over bigint.cpp and primes.cpp
-ifdef _DEBUG
- TUint carry = Increment(Ptr(), Size());
- assert(!carry);
-else
- Increment(Ptr(), Size())
-endif
-*/
-void IncrementNoCarry(word *A, unsigned int N, word B)
-{
- assert(N);
- word t = A[0];
- A[0] = t+B;
- if (A[0] >= t)
- return;
- for (unsigned i=1; i<N; i++)
- if (++A[i])
- return;
- assert(0);
-}
-
-word Increment(word *A, unsigned int N, word B)
-{
- assert(N);
- word t = A[0];
- A[0] = t+B;
- if (A[0] >= t)
- return 0;
- for (unsigned i=1; i<N; i++)
- if (++A[i])
- return 0;
- return 1;
-}
-
-//See commments above about IncrementNoCarry
-void DecrementNoCarry(word *A, unsigned int N, word B)
-{
- assert(N);
- word t = A[0];
- A[0] = t-B;
- if (A[0] <= t)
- return;
- for (unsigned i=1; i<N; i++)
- if (A[i]--)
- return;
- assert(0);
-}
-
-word Decrement(word *A, unsigned int N, word B)
-{
- assert(N);
- word t = A[0];
- A[0] = t-B;
- if (A[0] <= t)
- return 0;
- for (unsigned i=1; i<N; i++)
- if (A[i]--)
- return 0;
- return 1;
-}
-
-void TwosComplement(word *A, unsigned int N)
-{
- Decrement(A, N);
- for (unsigned i=0; i<N; i++)
- A[i] = ~A[i];
-}
-
-static word LinearMultiply(word *C, const word *A, word B, unsigned int N)
-{
- word carry=0;
- for(unsigned i=0; i<N; i++)
- {
- dword p = (dword)A[i] * B + carry;
- C[i] = LOW_WORD(p);
- carry = HIGH_WORD(p);
- }
- return carry;
-}
-
-static void AtomicMultiply(word *C, const word *A, const word *B)
-{
-/*
- word s;
- dword d;
-
- if (A1 >= A0)
- if (B0 >= B1)
- {
- s = 0;
- d = (dword)(A1-A0)*(B0-B1);
- }
- else
- {
- s = (A1-A0);
- d = (dword)s*(word)(B0-B1);
- }
- else
- if (B0 > B1)
- {
- s = (B0-B1);
- d = (word)(A1-A0)*(dword)s;
- }
- else
- {
- s = 0;
- d = (dword)(A0-A1)*(B1-B0);
- }
-*/
- // this segment is the branchless equivalent of above
- word D[4] = {A[1]-A[0], A[0]-A[1], B[0]-B[1], B[1]-B[0]};
- unsigned int ai = A[1] < A[0];
- unsigned int bi = B[0] < B[1];
- unsigned int di = ai & bi;
- dword d = (dword)D[di]*D[di+2];
- D[1] = D[3] = 0;
- unsigned int si = ai + !bi;
- word s = D[si];
-
- dword A0B0 = (dword)A[0]*B[0];
- C[0] = LOW_WORD(A0B0);
-
- dword A1B1 = (dword)A[1]*B[1];
- dword t = (dword) HIGH_WORD(A0B0) + LOW_WORD(A0B0) + LOW_WORD(d) + LOW_WORD(A1B1);
- C[1] = LOW_WORD(t);
-
- t = A1B1 + HIGH_WORD(t) + HIGH_WORD(A0B0) + HIGH_WORD(d) + HIGH_WORD(A1B1) - s;
- C[2] = LOW_WORD(t);
- C[3] = HIGH_WORD(t);
-}
-
-static word AtomicMultiplyAdd(word *C, const word *A, const word *B)
-{
- word D[4] = {A[1]-A[0], A[0]-A[1], B[0]-B[1], B[1]-B[0]};
- unsigned int ai = A[1] < A[0];
- unsigned int bi = B[0] < B[1];
- unsigned int di = ai & bi;
- dword d = (dword)D[di]*D[di+2];
- D[1] = D[3] = 0;
- unsigned int si = ai + !bi;
- word s = D[si];
-
- dword A0B0 = (dword)A[0]*B[0];
- dword t = A0B0 + C[0];
- C[0] = LOW_WORD(t);
-
- dword A1B1 = (dword)A[1]*B[1];
- t = (dword) HIGH_WORD(t) + LOW_WORD(A0B0) + LOW_WORD(d) + LOW_WORD(A1B1) + C[1];
- C[1] = LOW_WORD(t);
-
- t = (dword) HIGH_WORD(t) + LOW_WORD(A1B1) + HIGH_WORD(A0B0) + HIGH_WORD(d) + HIGH_WORD(A1B1) - s + C[2];
- C[2] = LOW_WORD(t);
-
- t = (dword) HIGH_WORD(t) + HIGH_WORD(A1B1) + C[3];
- C[3] = LOW_WORD(t);
- return HIGH_WORD(t);
-}
-
-static inline void AtomicMultiplyBottom(word *C, const word *A, const word *B)
-{
- dword t = (dword)A[0]*B[0];
- C[0] = LOW_WORD(t);
- C[1] = HIGH_WORD(t) + A[0]*B[1] + A[1]*B[0];
-}
-
-#define MulAcc(x, y) \
- p = (dword)A[x] * B[y] + c; \
- c = LOW_WORD(p); \
- p = (dword)d + HIGH_WORD(p); \
- d = LOW_WORD(p); \
- e += HIGH_WORD(p);
-
-#define SaveMulAcc(s, x, y) \
- R[s] = c; \
- p = (dword)A[x] * B[y] + d; \
- c = LOW_WORD(p); \
- p = (dword)e + HIGH_WORD(p); \
- d = LOW_WORD(p); \
- e = HIGH_WORD(p);
-
-#define MulAcc1(x, y) \
- p = (dword)A[x] * A[y] + c; \
- c = LOW_WORD(p); \
- p = (dword)d + HIGH_WORD(p); \
- d = LOW_WORD(p); \
- e += HIGH_WORD(p);
-
-#define SaveMulAcc1(s, x, y) \
- R[s] = c; \
- p = (dword)A[x] * A[y] + d; \
- c = LOW_WORD(p); \
- p = (dword)e + HIGH_WORD(p); \
- d = LOW_WORD(p); \
- e = HIGH_WORD(p);
-
-#define SquAcc(x, y) \
- p = (dword)A[x] * A[y]; \
- p = p + p + c; \
- c = LOW_WORD(p); \
- p = (dword)d + HIGH_WORD(p); \
- d = LOW_WORD(p); \
- e += HIGH_WORD(p);
-
-#define SaveSquAcc(s, x, y) \
- R[s] = c; \
- p = (dword)A[x] * A[y]; \
- p = p + p + d; \
- c = LOW_WORD(p); \
- p = (dword)e + HIGH_WORD(p); \
- d = LOW_WORD(p); \
- e = HIGH_WORD(p);
-
-// VC60 workaround: MSVC 6.0 has an optimization problem that makes
-// (dword)A*B where either A or B has been cast to a dword before
-// very expensive. Revisit a CombaSquare4() function when this
-// problem is fixed.
-
-// WARNING: KeithR. 05/08/03 This routine doesn't work with gcc on hardware
-// either. I've completely removed it. It may be worth looking into sometime
-// in the future.
-/*#ifndef __WINS__
-static void CombaSquare4(word *R, const word *A)
-{
- dword p;
- word c, d, e;
-
- p = (dword)A[0] * A[0];
- R[0] = LOW_WORD(p);
- c = HIGH_WORD(p);
- d = e = 0;
-
- SquAcc(0, 1);
-
- SaveSquAcc(1, 2, 0);
- MulAcc1(1, 1);
-
- SaveSquAcc(2, 0, 3);
- SquAcc(1, 2);
-
- SaveSquAcc(3, 3, 1);
- MulAcc1(2, 2);
-
- SaveSquAcc(4, 2, 3);
-
- R[5] = c;
- p = (dword)A[3] * A[3] + d;
- R[6] = LOW_WORD(p);
- R[7] = e + HIGH_WORD(p);
-}
-#endif */
-
-static void CombaMultiply4(word *R, const word *A, const word *B)
-{
- dword p;
- word c, d, e;
-
- p = (dword)A[0] * B[0];
- R[0] = LOW_WORD(p);
- c = HIGH_WORD(p);
- d = e = 0;
-
- MulAcc(0, 1);
- MulAcc(1, 0);
-
- SaveMulAcc(1, 2, 0);
- MulAcc(1, 1);
- MulAcc(0, 2);
-
- SaveMulAcc(2, 0, 3);
- MulAcc(1, 2);
- MulAcc(2, 1);
- MulAcc(3, 0);
-
- SaveMulAcc(3, 3, 1);
- MulAcc(2, 2);
- MulAcc(1, 3);
-
- SaveMulAcc(4, 2, 3);
- MulAcc(3, 2);
-
- R[5] = c;
- p = (dword)A[3] * B[3] + d;
- R[6] = LOW_WORD(p);
- R[7] = e + HIGH_WORD(p);
-}
-
-static void CombaMultiply8(word *R, const word *A, const word *B)
-{
- dword p;
- word c, d, e;
-
- p = (dword)A[0] * B[0];
- R[0] = LOW_WORD(p);
- c = HIGH_WORD(p);
- d = e = 0;
-
- MulAcc(0, 1);
- MulAcc(1, 0);
-
- SaveMulAcc(1, 2, 0);
- MulAcc(1, 1);
- MulAcc(0, 2);
-
- SaveMulAcc(2, 0, 3);
- MulAcc(1, 2);
- MulAcc(2, 1);
- MulAcc(3, 0);
-
- SaveMulAcc(3, 0, 4);
- MulAcc(1, 3);
- MulAcc(2, 2);
- MulAcc(3, 1);
- MulAcc(4, 0);
-
- SaveMulAcc(4, 0, 5);
- MulAcc(1, 4);
- MulAcc(2, 3);
- MulAcc(3, 2);
- MulAcc(4, 1);
- MulAcc(5, 0);
-
- SaveMulAcc(5, 0, 6);
- MulAcc(1, 5);
- MulAcc(2, 4);
- MulAcc(3, 3);
- MulAcc(4, 2);
- MulAcc(5, 1);
- MulAcc(6, 0);
-
- SaveMulAcc(6, 0, 7);
- MulAcc(1, 6);
- MulAcc(2, 5);
- MulAcc(3, 4);
- MulAcc(4, 3);
- MulAcc(5, 2);
- MulAcc(6, 1);
- MulAcc(7, 0);
-
- SaveMulAcc(7, 1, 7);
- MulAcc(2, 6);
- MulAcc(3, 5);
- MulAcc(4, 4);
- MulAcc(5, 3);
- MulAcc(6, 2);
- MulAcc(7, 1);
-
- SaveMulAcc(8, 2, 7);
- MulAcc(3, 6);
- MulAcc(4, 5);
- MulAcc(5, 4);
- MulAcc(6, 3);
- MulAcc(7, 2);
-
- SaveMulAcc(9, 3, 7);
- MulAcc(4, 6);
- MulAcc(5, 5);
- MulAcc(6, 4);
- MulAcc(7, 3);
-
- SaveMulAcc(10, 4, 7);
- MulAcc(5, 6);
- MulAcc(6, 5);
- MulAcc(7, 4);
-
- SaveMulAcc(11, 5, 7);
- MulAcc(6, 6);
- MulAcc(7, 5);
-
- SaveMulAcc(12, 6, 7);
- MulAcc(7, 6);
-
- R[13] = c;
- p = (dword)A[7] * B[7] + d;
- R[14] = LOW_WORD(p);
- R[15] = e + HIGH_WORD(p);
-}
-
-static void CombaMultiplyBottom4(word *R, const word *A, const word *B)
-{
- dword p;
- word c, d, e;
-
- p = (dword)A[0] * B[0];
- R[0] = LOW_WORD(p);
- c = HIGH_WORD(p);
- d = e = 0;
-
- MulAcc(0, 1);
- MulAcc(1, 0);
-
- SaveMulAcc(1, 2, 0);
- MulAcc(1, 1);
- MulAcc(0, 2);
-
- R[2] = c;
- R[3] = d + A[0] * B[3] + A[1] * B[2] + A[2] * B[1] + A[3] * B[0];
-}
-
-static void CombaMultiplyBottom8(word *R, const word *A, const word *B)
-{
- dword p;
- word c, d, e;
-
- p = (dword)A[0] * B[0];
- R[0] = LOW_WORD(p);
- c = HIGH_WORD(p);
- d = e = 0;
-
- MulAcc(0, 1);
- MulAcc(1, 0);
-
- SaveMulAcc(1, 2, 0);
- MulAcc(1, 1);
- MulAcc(0, 2);
-
- SaveMulAcc(2, 0, 3);
- MulAcc(1, 2);
- MulAcc(2, 1);
- MulAcc(3, 0);
-
- SaveMulAcc(3, 0, 4);
- MulAcc(1, 3);
- MulAcc(2, 2);
- MulAcc(3, 1);
- MulAcc(4, 0);
-
- SaveMulAcc(4, 0, 5);
- MulAcc(1, 4);
- MulAcc(2, 3);
- MulAcc(3, 2);
- MulAcc(4, 1);
- MulAcc(5, 0);
-
- SaveMulAcc(5, 0, 6);
- MulAcc(1, 5);
- MulAcc(2, 4);
- MulAcc(3, 3);
- MulAcc(4, 2);
- MulAcc(5, 1);
- MulAcc(6, 0);
-
- R[6] = c;
- R[7] = d + A[0] * B[7] + A[1] * B[6] + A[2] * B[5] + A[3] * B[4] +
- A[4] * B[3] + A[5] * B[2] + A[6] * B[1] + A[7] * B[0];
-}
-
-#undef MulAcc
-#undef SaveMulAcc
-static void AtomicInverseModPower2(word *C, word A0, word A1)
-{
- assert(A0%2==1);
-
- dword A=MAKE_DWORD(A0, A1), R=A0%8;
-
- for (unsigned i=3; i<2*WORD_BITS; i*=2)
- R = R*(2-R*A);
-
- assert(R*A==1);
-
- C[0] = LOW_WORD(R);
- C[1] = HIGH_WORD(R);
-}
-// ********************************************************
-
-#define A0 A
-#define A1 (A+N2)
-#define B0 B
-#define B1 (B+N2)
-
-#define T0 T
-#define T1 (T+N2)
-#define T2 (T+N)
-#define T3 (T+N+N2)
-
-#define R0 R
-#define R1 (R+N2)
-#define R2 (R+N)
-#define R3 (R+N+N2)
-
-// R[2*N] - result = A*B
-// T[2*N] - temporary work space
-// A[N] --- multiplier
-// B[N] --- multiplicant
-
-void RecursiveMultiply(word *R, word *T, const word *A, const word *B, unsigned int N)
-{
- assert(N>=2 && N%2==0);
-
- if (N==2)
- AtomicMultiply(R, A, B);
- else if (N==4)
- CombaMultiply4(R, A, B);
- else if (N==8)
- CombaMultiply8(R, A, B);
- else
- {
- const unsigned int N2 = N/2;
- int carry;
-
- int aComp = Compare(A0, A1, N2);
- int bComp = Compare(B0, B1, N2);
-
- switch (2*aComp + aComp + bComp)
- {
- case -4:
- Subtract(R0, A1, A0, N2);
- Subtract(R1, B0, B1, N2);
- RecursiveMultiply(T0, T2, R0, R1, N2);
- Subtract(T1, T1, R0, N2);
- carry = -1;
- break;
- case -2:
- Subtract(R0, A1, A0, N2);
- Subtract(R1, B0, B1, N2);
- RecursiveMultiply(T0, T2, R0, R1, N2);
- carry = 0;
- break;
- case 2:
- Subtract(R0, A0, A1, N2);
- Subtract(R1, B1, B0, N2);
- RecursiveMultiply(T0, T2, R0, R1, N2);
- carry = 0;
- break;
- case 4:
- Subtract(R0, A1, A0, N2);
- Subtract(R1, B0, B1, N2);
- RecursiveMultiply(T0, T2, R0, R1, N2);
- Subtract(T1, T1, R1, N2);
- carry = -1;
- break;
- default:
- SetWords(T0, 0, N);
- carry = 0;
- }
-
- RecursiveMultiply(R0, T2, A0, B0, N2);
- RecursiveMultiply(R2, T2, A1, B1, N2);
-
- // now T[01] holds (A1-A0)*(B0-B1), R[01] holds A0*B0, R[23] holds A1*B1
-
- carry += Add(T0, T0, R0, N);
- carry += Add(T0, T0, R2, N);
- carry += Add(R1, R1, T0, N);
-
- assert (carry >= 0 && carry <= 2);
- Increment(R3, N2, carry);
- }
-}
-
-// R[2*N] - result = A*A
-// T[2*N] - temporary work space
-// A[N] --- number to be squared
-
-void RecursiveSquare(word *R, word *T, const word *A, unsigned int N)
-{
- assert(N && N%2==0);
-
- if (N==2)
- AtomicMultiply(R, A, A);
- else if (N==4)
- {
- // VC60 workaround: MSVC 6.0 has an optimization problem that makes
- // (dword)A*B where either A or B has been cast to a dword before
- // very expensive. Revisit a CombaSquare4() function when this
- // problem is fixed.
-
-// WARNING: KeithR. 05/08/03 This routine doesn't work with gcc on hardware
-// either. I've completely removed it. It may be worth looking into sometime
-// in the future. Therefore, we use the CombaMultiply4 on all targets.
-//#ifdef __WINS__
- CombaMultiply4(R, A, A);
-/*#else
- CombaSquare4(R, A);
-#endif*/
- }
- else
- {
- const unsigned int N2 = N/2;
-
- RecursiveSquare(R0, T2, A0, N2);
- RecursiveSquare(R2, T2, A1, N2);
- RecursiveMultiply(T0, T2, A0, A1, N2);
-
- word carry = Add(R1, R1, T0, N);
- carry += Add(R1, R1, T0, N);
- Increment(R3, N2, carry);
- }
-}
-// R[N] - bottom half of A*B
-// T[N] - temporary work space
-// A[N] - multiplier
-// B[N] - multiplicant
-
-void RecursiveMultiplyBottom(word *R, word *T, const word *A, const word *B, unsigned int N)
-{
- assert(N>=2 && N%2==0);
-
- if (N==2)
- AtomicMultiplyBottom(R, A, B);
- else if (N==4)
- CombaMultiplyBottom4(R, A, B);
- else if (N==8)
- CombaMultiplyBottom8(R, A, B);
- else
- {
- const unsigned int N2 = N/2;
-
- RecursiveMultiply(R, T, A0, B0, N2);
- RecursiveMultiplyBottom(T0, T1, A1, B0, N2);
- Add(R1, R1, T0, N2);
- RecursiveMultiplyBottom(T0, T1, A0, B1, N2);
- Add(R1, R1, T0, N2);
- }
-}
-
-// R[N] --- upper half of A*B
-// T[2*N] - temporary work space
-// L[N] --- lower half of A*B
-// A[N] --- multiplier
-// B[N] --- multiplicant
-
-void RecursiveMultiplyTop(word *R, word *T, const word *L, const word *A, const word *B, unsigned int N)
-{
- assert(N>=2 && N%2==0);
-
- if (N==2)
- {
- AtomicMultiply(T, A, B);
- ((dword *)R)[0] = ((dword *)T)[1];
- }
- else if (N==4)
- {
- CombaMultiply4(T, A, B);
- ((dword *)R)[0] = ((dword *)T)[2];
- ((dword *)R)[1] = ((dword *)T)[3];
- }
- else
- {
- const unsigned int N2 = N/2;
- int carry;
-
- int aComp = Compare(A0, A1, N2);
- int bComp = Compare(B0, B1, N2);
-
- switch (2*aComp + aComp + bComp)
- {
- case -4:
- Subtract(R0, A1, A0, N2);
- Subtract(R1, B0, B1, N2);
- RecursiveMultiply(T0, T2, R0, R1, N2);
- Subtract(T1, T1, R0, N2);
- carry = -1;
- break;
- case -2:
- Subtract(R0, A1, A0, N2);
- Subtract(R1, B0, B1, N2);
- RecursiveMultiply(T0, T2, R0, R1, N2);
- carry = 0;
- break;
- case 2:
- Subtract(R0, A0, A1, N2);
- Subtract(R1, B1, B0, N2);
- RecursiveMultiply(T0, T2, R0, R1, N2);
- carry = 0;
- break;
- case 4:
- Subtract(R0, A1, A0, N2);
- Subtract(R1, B0, B1, N2);
- RecursiveMultiply(T0, T2, R0, R1, N2);
- Subtract(T1, T1, R1, N2);
- carry = -1;
- break;
- default:
- SetWords(T0, 0, N);
- carry = 0;
- }
-
- RecursiveMultiply(T2, R0, A1, B1, N2);
-
- // now T[01] holds (A1-A0)*(B0-B1), T[23] holds A1*B1
-
- CopyWords(R0, L+N2, N2);
- word c2 = Subtract(R0, R0, L, N2);
- c2 += Subtract(R0, R0, T0, N2);
- word t = (Compare(R0, T2, N2) == -1);
-
- carry += t;
- carry += Increment(R0, N2, c2+t);
- carry += Add(R0, R0, T1, N2);
- carry += Add(R0, R0, T3, N2);
-
- CopyWords(R1, T3, N2);
- assert (carry >= 0 && carry <= 2);
- Increment(R1, N2, carry);
- }
-}
-
-// R[NA+NB] - result = A*B
-// T[NA+NB] - temporary work space
-// A[NA] ---- multiplier
-// B[NB] ---- multiplicant
-
-void AsymmetricMultiply(word *R, word *T, const word *A, unsigned int NA, const word *B, unsigned int NB)
-{
- if (NA == NB)
- {
- if (A == B)
- RecursiveSquare(R, T, A, NA);
- else
- RecursiveMultiply(R, T, A, B, NA);
-
- return;
- }
-
- if (NA > NB)
- {
- TClassSwap(A, B);
- TClassSwap(NA, NB);
- //std::swap(A, B);
- //std::swap(NA, NB);
- }
-
- assert(NB % NA == 0);
- assert((NB/NA)%2 == 0); // NB is an even multiple of NA
-
- if (NA==2 && !A[1])
- {
- switch (A[0])
- {
- case 0:
- SetWords(R, 0, NB+2);
- return;
- case 1:
- CopyWords(R, B, NB);
- R[NB] = R[NB+1] = 0;
- return;
- default:
- R[NB] = LinearMultiply(R, B, A[0], NB);
- R[NB+1] = 0;
- return;
- }
- }
-
- RecursiveMultiply(R, T, A, B, NA);
- CopyWords(T+2*NA, R+NA, NA);
-
- unsigned i;
-
- for (i=2*NA; i<NB; i+=2*NA)
- RecursiveMultiply(T+NA+i, T, A, B+i, NA);
- for (i=NA; i<NB; i+=2*NA)
- RecursiveMultiply(R+i, T, A, B+i, NA);
-
- if (Add(R+NA, R+NA, T+2*NA, NB-NA))
- Increment(R+NB, NA);
-}
-// R[N] ----- result = A inverse mod 2**(WORD_BITS*N)
-// T[3*N/2] - temporary work space
-// A[N] ----- an odd number as input
-
-void RecursiveInverseModPower2(word *R, word *T, const word *A, unsigned int N)
-{
- if (N==2)
- AtomicInverseModPower2(R, A[0], A[1]);
- else
- {
- const unsigned int N2 = N/2;
- RecursiveInverseModPower2(R0, T0, A0, N2);
- T0[0] = 1;
- SetWords(T0+1, 0, N2-1);
- RecursiveMultiplyTop(R1, T1, T0, R0, A0, N2);
- RecursiveMultiplyBottom(T0, T1, R0, A1, N2);
- Add(T0, R1, T0, N2);
- TwosComplement(T0, N2);
- RecursiveMultiplyBottom(R1, T1, R0, T0, N2);
- }
-}
-#undef A0
-#undef A1
-#undef B0
-#undef B1
-
-#undef T0
-#undef T1
-#undef T2
-#undef T3
-
-#undef R0
-#undef R1
-#undef R2
-#undef R3
-
-// R[N] --- result = X/(2**(WORD_BITS*N)) mod M
-// T[3*N] - temporary work space
-// X[2*N] - number to be reduced
-// M[N] --- modulus
-// U[N] --- multiplicative inverse of M mod 2**(WORD_BITS*N)
-
-void MontgomeryReduce(word *R, word *T, const word *X, const word *M, const word *U, unsigned int N)
-{
- RecursiveMultiplyBottom(R, T, X, U, N);
- RecursiveMultiplyTop(T, T+N, X, R, M, N);
- if (Subtract(R, X+N, T, N))
- {
-#ifdef _DEBUG
- word carry = Add(R, R, M, N);
- assert(carry);
-#else
- Add(R, R, M, N);
-#endif
- }
-}
-
-// do a 3 word by 2 word divide, returns quotient and leaves remainder in A
-static word SubatomicDivide(word *A, word B0, word B1)
-{
- // assert {A[2],A[1]} < {B1,B0}, so quotient can fit in a word
- assert(A[2] < B1 || (A[2]==B1 && A[1] < B0));
-
- dword p, u;
- word Q;
-
- // estimate the quotient: do a 2 word by 1 word divide
- if (B1+1 == 0)
- Q = A[2];
- else
- Q = word(MAKE_DWORD(A[1], A[2]) / (B1+1));
-
- // now subtract Q*B from A
- p = (dword) B0*Q;
- u = (dword) A[0] - LOW_WORD(p);
- A[0] = LOW_WORD(u);
- u = (dword) A[1] - HIGH_WORD(p) - (word)(0-HIGH_WORD(u)) - (dword)B1*Q;
- A[1] = LOW_WORD(u);
- A[2] += HIGH_WORD(u);
-
- // Q <= actual quotient, so fix it
- while (A[2] || A[1] > B1 || (A[1]==B1 && A[0]>=B0))
- {
- u = (dword) A[0] - B0;
- A[0] = LOW_WORD(u);
- u = (dword) A[1] - B1 - (word)(0-HIGH_WORD(u));
- A[1] = LOW_WORD(u);
- A[2] += HIGH_WORD(u);
- Q++;
- assert(Q); // shouldn't overflow
- }
-
- return Q;
-}
-
-// do a 4 word by 2 word divide, returns 2 word quotient in Q0 and Q1
-static inline void AtomicDivide(word *Q, const word *A, const word *B)
-{
- if (!B[0] && !B[1]) // if divisor is 0, we assume divisor==2**(2*WORD_BITS)
- {
- Q[0] = A[2];
- Q[1] = A[3];
- }
- else
- {
- word T[4];
- T[0] = A[0]; T[1] = A[1]; T[2] = A[2]; T[3] = A[3];
- Q[1] = SubatomicDivide(T+1, B[0], B[1]);
- Q[0] = SubatomicDivide(T, B[0], B[1]);
-
-#ifdef _DEBUG
- // multiply quotient and divisor and add remainder, make sure it equals dividend
- assert(!T[2] && !T[3] && (T[1] < B[1] || (T[1]==B[1] && T[0]<B[0])));
- word P[4];
- AtomicMultiply(P, Q, B);
- Add(P, P, T, 4);
- assert(Mem::Compare((TUint8*)P, 4*WORD_SIZE, (TUint8*)A, 4*WORD_SIZE)==0);
-#endif
- }
-}
-
-// for use by Divide(), corrects the underestimated quotient {Q1,Q0}
-static void CorrectQuotientEstimate(word *R, word *T, word *Q, const word *B, unsigned int N)
-{
- assert(N && N%2==0);
-
- if (Q[1])
- {
- T[N] = T[N+1] = 0;
- unsigned i;
- for (i=0; i<N; i+=4)
- AtomicMultiply(T+i, Q, B+i);
- for (i=2; i<N; i+=4)
- if (AtomicMultiplyAdd(T+i, Q, B+i))
- T[i+5] += (++T[i+4]==0);
- }
- else
- {
- T[N] = LinearMultiply(T, B, Q[0], N);
- T[N+1] = 0;
- }
-
-#ifdef _DEBUG
- word borrow = Subtract(R, R, T, N+2);
- assert(!borrow && !R[N+1]);
-#else
- Subtract(R, R, T, N+2);
-#endif
-
- while (R[N] || Compare(R, B, N) >= 0)
- {
- R[N] -= Subtract(R, R, B, N);
- Q[1] += (++Q[0]==0);
- assert(Q[0] || Q[1]); // no overflow
- }
-}
-
-// R[NB] -------- remainder = A%B
-// Q[NA-NB+2] --- quotient = A/B
-// T[NA+2*NB+4] - temp work space
-// A[NA] -------- dividend
-// B[NB] -------- divisor
-
-void Divide(word *R, word *Q, word *T, const word *A, unsigned int NA, const word *B, unsigned int NB)
-{
- assert(NA && NB && NA%2==0 && NB%2==0);
- assert(B[NB-1] || B[NB-2]);
- assert(NB <= NA);
-
- // set up temporary work space
- word *const TA=T;
- word *const TB=T+NA+2;
- word *const TP=T+NA+2+NB;
-
- // copy B into TB and normalize it so that TB has highest bit set to 1
- unsigned shiftWords = (B[NB-1]==0);
- TB[0] = TB[NB-1] = 0;
- CopyWords(TB+shiftWords, B, NB-shiftWords);
- unsigned shiftBits = WORD_BITS - BitPrecision(TB[NB-1]);
- assert(shiftBits < WORD_BITS);
- ShiftWordsLeftByBits(TB, NB, shiftBits);
-
- // copy A into TA and normalize it
- TA[0] = TA[NA] = TA[NA+1] = 0;
- CopyWords(TA+shiftWords, A, NA);
- ShiftWordsLeftByBits(TA, NA+2, shiftBits);
-
- if (TA[NA+1]==0 && TA[NA] <= 1)
- {
- Q[NA-NB+1] = Q[NA-NB] = 0;
- while (TA[NA] || Compare(TA+NA-NB, TB, NB) >= 0)
- {
- TA[NA] -= Subtract(TA+NA-NB, TA+NA-NB, TB, NB);
- ++Q[NA-NB];
- }
- }
- else
- {
- NA+=2;
- assert(Compare(TA+NA-NB, TB, NB) < 0);
- }
-
- word BT[2];
- BT[0] = TB[NB-2] + 1;
- BT[1] = TB[NB-1] + (BT[0]==0);
-
- // start reducing TA mod TB, 2 words at a time
- for (unsigned i=NA-2; i>=NB; i-=2)
- {
- AtomicDivide(Q+i-NB, TA+i-2, BT);
- CorrectQuotientEstimate(TA+i-NB, TP, Q+i-NB, TB, NB);
- }
-
- // copy TA into R, and denormalize it
- CopyWords(R, TA+shiftWords, NB);
- ShiftWordsRightByBits(R, NB, shiftBits);
-}
-
-static inline unsigned int EvenWordCount(const word *X, unsigned int N)
-{
- while (N && X[N-2]==0 && X[N-1]==0)
- N-=2;
- return N;
-}
-
-// return k
-// R[N] --- result = A^(-1) * 2^k mod M
-// T[4*N] - temporary work space
-// A[NA] -- number to take inverse of
-// M[N] --- modulus
-
-unsigned int AlmostInverse(word *R, word *T, const word *A, unsigned int NA, const word *M, unsigned int N)
-{
- assert(NA<=N && N && N%2==0);
-
- word *b = T;
- word *c = T+N;
- word *f = T+2*N;
- word *g = T+3*N;
- unsigned int bcLen=2, fgLen=EvenWordCount(M, N);
- unsigned int k=0, s=0;
-
- SetWords(T, 0, 3*N);
- b[0]=1;
- CopyWords(f, A, NA);
- CopyWords(g, M, N);
-
- FOREVER
- {
- word t=f[0];
- while (!t)
- {
- if (EvenWordCount(f, fgLen)==0)
- {
- SetWords(R, 0, N);
- return 0;
- }
-
- ShiftWordsRightByWords(f, fgLen, 1);
- if (c[bcLen-1]) bcLen+=2;
- assert(bcLen <= N);
- ShiftWordsLeftByWords(c, bcLen, 1);
- k+=WORD_BITS;
- t=f[0];
- }
-
- unsigned int i=0;
- while (t%2 == 0)
- {
- t>>=1;
- i++;
- }
- k+=i;
-
- if (t==1 && f[1]==0 && EvenWordCount(f, fgLen)==2)
- {
- if (s%2==0)
- CopyWords(R, b, N);
- else
- Subtract(R, M, b, N);
- return k;
- }
-
- ShiftWordsRightByBits(f, fgLen, i);
- t=ShiftWordsLeftByBits(c, bcLen, i);
- if (t)
- {
- c[bcLen] = t;
- bcLen+=2;
- assert(bcLen <= N);
- }
-
- if (f[fgLen-2]==0 && g[fgLen-2]==0 && f[fgLen-1]==0 && g[fgLen-1]==0)
- fgLen-=2;
-
- if (Compare(f, g, fgLen)==-1)
- {
- TClassSwap<word*>(f,g);
- TClassSwap<word*>(b,c);
- s++;
- }
-
- Subtract(f, f, g, fgLen);
-
- if (Add(b, b, c, bcLen))
- {
- b[bcLen] = 1;
- bcLen+=2;
- assert(bcLen <= N);
- }
- }
-}
-
-// R[N] - result = A/(2^k) mod M
-// A[N] - input
-// M[N] - modulus
-
-void DivideByPower2Mod(word *R, const word *A, unsigned int k, const word *M, unsigned int N)
-{
- CopyWords(R, A, N);
-
- while (k--)
- {
- if (R[0]%2==0)
- ShiftWordsRightByBits(R, N, 1);
- else
- {
- word carry = Add(R, R, M, N);
- ShiftWordsRightByBits(R, N, 1);
- R[N-1] += carry<<(WORD_BITS-1);
- }
- }
-}
-