author | Eckhart Koeppen <eckhart.koppen@nokia.com> |
Wed, 21 Apr 2010 20:15:53 +0300 | |
branch | RCL_3 |
changeset 14 | c0432d11811c |
parent 4 | 3b1da2848fc7 |
child 30 | 5dc02b23752f |
permissions | -rw-r--r-- |
0 | 1 |
/**************************************************************************** |
2 |
** |
|
4
3b1da2848fc7
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
3
diff
changeset
|
3 |
** Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies). |
0 | 4 |
** All rights reserved. |
5 |
** Contact: Nokia Corporation (qt-info@nokia.com) |
|
6 |
** |
|
7 |
** This file is part of the QtGui module of the Qt Toolkit. |
|
8 |
** |
|
9 |
** $QT_BEGIN_LICENSE:LGPL$ |
|
10 |
** No Commercial Usage |
|
11 |
** This file contains pre-release code and may not be distributed. |
|
12 |
** You may use this file in accordance with the terms and conditions |
|
13 |
** contained in the Technology Preview License Agreement accompanying |
|
14 |
** this package. |
|
15 |
** |
|
16 |
** GNU Lesser General Public License Usage |
|
17 |
** Alternatively, this file may be used under the terms of the GNU Lesser |
|
18 |
** General Public License version 2.1 as published by the Free Software |
|
19 |
** Foundation and appearing in the file LICENSE.LGPL included in the |
|
20 |
** packaging of this file. Please review the following information to |
|
21 |
** ensure the GNU Lesser General Public License version 2.1 requirements |
|
22 |
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. |
|
23 |
** |
|
24 |
** In addition, as a special exception, Nokia gives you certain additional |
|
25 |
** rights. These rights are described in the Nokia Qt LGPL Exception |
|
26 |
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. |
|
27 |
** |
|
28 |
** If you have questions regarding the use of this file, please contact |
|
29 |
** Nokia at qt-info@nokia.com. |
|
30 |
** |
|
31 |
** |
|
32 |
** |
|
33 |
** |
|
34 |
** |
|
35 |
** |
|
36 |
** |
|
37 |
** |
|
38 |
** $QT_END_LICENSE$ |
|
39 |
** |
|
40 |
****************************************************************************/ |
|
41 |
#include "qtransform.h" |
|
42 |
||
43 |
#include "qdatastream.h" |
|
44 |
#include "qdebug.h" |
|
45 |
#include "qmatrix.h" |
|
46 |
#include "qregion.h" |
|
47 |
#include "qpainterpath.h" |
|
48 |
#include "qvariant.h" |
|
49 |
#include <qmath.h> |
|
50 |
||
51 |
#include <private/qbezier_p.h> |
|
52 |
||
53 |
QT_BEGIN_NAMESPACE |
|
54 |
||
55 |
#define Q_NEAR_CLIP (sizeof(qreal) == sizeof(double) ? 0.000001 : 0.0001) |
|
56 |
||
57 |
#ifdef MAP |
|
58 |
# undef MAP |
|
59 |
#endif |
|
60 |
#define MAP(x, y, nx, ny) \ |
|
61 |
do { \ |
|
62 |
qreal FX_ = x; \ |
|
63 |
qreal FY_ = y; \ |
|
64 |
switch(t) { \ |
|
65 |
case TxNone: \ |
|
66 |
nx = FX_; \ |
|
67 |
ny = FY_; \ |
|
68 |
break; \ |
|
69 |
case TxTranslate: \ |
|
70 |
nx = FX_ + affine._dx; \ |
|
71 |
ny = FY_ + affine._dy; \ |
|
72 |
break; \ |
|
73 |
case TxScale: \ |
|
74 |
nx = affine._m11 * FX_ + affine._dx; \ |
|
75 |
ny = affine._m22 * FY_ + affine._dy; \ |
|
76 |
break; \ |
|
77 |
case TxRotate: \ |
|
78 |
case TxShear: \ |
|
79 |
case TxProject: \ |
|
80 |
nx = affine._m11 * FX_ + affine._m21 * FY_ + affine._dx; \ |
|
81 |
ny = affine._m12 * FX_ + affine._m22 * FY_ + affine._dy; \ |
|
82 |
if (t == TxProject) { \ |
|
83 |
qreal w = (m_13 * FX_ + m_23 * FY_ + m_33); \ |
|
84 |
if (w < qreal(Q_NEAR_CLIP)) w = qreal(Q_NEAR_CLIP); \ |
|
85 |
w = 1./w; \ |
|
86 |
nx *= w; \ |
|
87 |
ny *= w; \ |
|
88 |
} \ |
|
89 |
} \ |
|
90 |
} while (0) |
|
91 |
||
92 |
/*! |
|
93 |
\class QTransform |
|
94 |
\brief The QTransform class specifies 2D transformations of a coordinate system. |
|
95 |
\since 4.3 |
|
96 |
\ingroup painting |
|
97 |
||
98 |
A transformation specifies how to translate, scale, shear, rotate |
|
99 |
or project the coordinate system, and is typically used when |
|
100 |
rendering graphics. |
|
101 |
||
102 |
QTransform differs from QMatrix in that it is a true 3x3 matrix, |
|
103 |
allowing perspective transformations. QTransform's toAffine() |
|
104 |
method allows casting QTransform to QMatrix. If a perspective |
|
105 |
transformation has been specified on the matrix, then the |
|
106 |
conversion will cause loss of data. |
|
107 |
||
108 |
QTransform is the recommended transformation class in Qt. |
|
109 |
||
110 |
A QTransform object can be built using the setMatrix(), scale(), |
|
111 |
rotate(), translate() and shear() functions. Alternatively, it |
|
112 |
can be built by applying \l {QTransform#Basic Matrix |
|
113 |
Operations}{basic matrix operations}. The matrix can also be |
|
114 |
defined when constructed, and it can be reset to the identity |
|
115 |
matrix (the default) using the reset() function. |
|
116 |
||
117 |
The QTransform class supports mapping of graphic primitives: A given |
|
118 |
point, line, polygon, region, or painter path can be mapped to the |
|
119 |
coordinate system defined by \e this matrix using the map() |
|
120 |
function. In case of a rectangle, its coordinates can be |
|
121 |
transformed using the mapRect() function. A rectangle can also be |
|
122 |
transformed into a \e polygon (mapped to the coordinate system |
|
123 |
defined by \e this matrix), using the mapToPolygon() function. |
|
124 |
||
125 |
QTransform provides the isIdentity() function which returns true if |
|
126 |
the matrix is the identity matrix, and the isInvertible() function |
|
127 |
which returns true if the matrix is non-singular (i.e. AB = BA = |
|
128 |
I). The inverted() function returns an inverted copy of \e this |
|
129 |
matrix if it is invertible (otherwise it returns the identity |
|
130 |
matrix), and adjoint() returns the matrix's classical adjoint. |
|
131 |
In addition, QTransform provides the determinant() function which |
|
132 |
returns the matrix's determinant. |
|
133 |
||
134 |
Finally, the QTransform class supports matrix multiplication, addition |
|
135 |
and subtraction, and objects of the class can be streamed as well |
|
136 |
as compared. |
|
137 |
||
138 |
\tableofcontents |
|
139 |
||
140 |
\section1 Rendering Graphics |
|
141 |
||
142 |
When rendering graphics, the matrix defines the transformations |
|
143 |
but the actual transformation is performed by the drawing routines |
|
144 |
in QPainter. |
|
145 |
||
146 |
By default, QPainter operates on the associated device's own |
|
147 |
coordinate system. The standard coordinate system of a |
|
148 |
QPaintDevice has its origin located at the top-left position. The |
|
149 |
\e x values increase to the right; \e y values increase |
|
150 |
downward. For a complete description, see the \l {The Coordinate |
|
151 |
System}{coordinate system} documentation. |
|
152 |
||
153 |
QPainter has functions to translate, scale, shear and rotate the |
|
154 |
coordinate system without using a QTransform. For example: |
|
155 |
||
156 |
\table 100% |
|
157 |
\row |
|
158 |
\o \inlineimage qtransform-simpletransformation.png |
|
159 |
\o |
|
160 |
\snippet doc/src/snippets/transform/main.cpp 0 |
|
161 |
\endtable |
|
162 |
||
163 |
Although these functions are very convenient, it can be more |
|
164 |
efficient to build a QTransform and call QPainter::setTransform() if you |
|
165 |
want to perform more than a single transform operation. For |
|
166 |
example: |
|
167 |
||
168 |
\table 100% |
|
169 |
\row |
|
170 |
\o \inlineimage qtransform-combinedtransformation.png |
|
171 |
\o |
|
172 |
\snippet doc/src/snippets/transform/main.cpp 1 |
|
173 |
\endtable |
|
174 |
||
175 |
\section1 Basic Matrix Operations |
|
176 |
||
177 |
\image qtransform-representation.png |
|
178 |
||
179 |
A QTransform object contains a 3 x 3 matrix. The \c m31 (\c dx) and |
|
180 |
\c m32 (\c dy) elements specify horizontal and vertical translation. |
|
181 |
The \c m11 and \c m22 elements specify horizontal and vertical scaling. |
|
182 |
The \c m21 and \c m12 elements specify horizontal and vertical \e shearing. |
|
183 |
And finally, the \c m13 and \c m23 elements specify horizontal and vertical |
|
184 |
projection, with \c m33 as an additional projection factor. |
|
185 |
||
186 |
QTransform transforms a point in the plane to another point using the |
|
187 |
following formulas: |
|
188 |
||
189 |
\snippet doc/src/snippets/code/src_gui_painting_qtransform.cpp 0 |
|
190 |
||
191 |
The point \e (x, y) is the original point, and \e (x', y') is the |
|
192 |
transformed point. \e (x', y') can be transformed back to \e (x, |
|
193 |
y) by performing the same operation on the inverted() matrix. |
|
194 |
||
195 |
The various matrix elements can be set when constructing the |
|
196 |
matrix, or by using the setMatrix() function later on. They can also |
|
197 |
be manipulated using the translate(), rotate(), scale() and |
|
198 |
shear() convenience functions. The currently set values can be |
|
199 |
retrieved using the m11(), m12(), m13(), m21(), m22(), m23(), |
|
200 |
m31(), m32(), m33(), dx() and dy() functions. |
|
201 |
||
202 |
Translation is the simplest transformation. Setting \c dx and \c |
|
203 |
dy will move the coordinate system \c dx units along the X axis |
|
204 |
and \c dy units along the Y axis. Scaling can be done by setting |
|
205 |
\c m11 and \c m22. For example, setting \c m11 to 2 and \c m22 to |
|
206 |
1.5 will double the height and increase the width by 50%. The |
|
207 |
identity matrix has \c m11, \c m22, and \c m33 set to 1 (all others are set |
|
208 |
to 0) mapping a point to itself. Shearing is controlled by \c m12 |
|
209 |
and \c m21. Setting these elements to values different from zero |
|
210 |
will twist the coordinate system. Rotation is achieved by |
|
211 |
setting both the shearing factors and the scaling factors. Perspective |
|
212 |
transformation is achieved by setting both the projection factors and |
|
213 |
the scaling factors. |
|
214 |
||
215 |
Here's the combined transformations example using basic matrix |
|
216 |
operations: |
|
217 |
||
218 |
\table 100% |
|
219 |
\row |
|
220 |
\o \inlineimage qtransform-combinedtransformation2.png |
|
221 |
\o |
|
222 |
\snippet doc/src/snippets/transform/main.cpp 2 |
|
223 |
\endtable |
|
224 |
||
225 |
\sa QPainter, {The Coordinate System}, {demos/affine}{Affine |
|
226 |
Transformations Demo}, {Transformations Example} |
|
227 |
*/ |
|
228 |
||
229 |
/*! |
|
230 |
\enum QTransform::TransformationType |
|
231 |
||
232 |
\value TxNone |
|
233 |
\value TxTranslate |
|
234 |
\value TxScale |
|
235 |
\value TxRotate |
|
236 |
\value TxShear |
|
237 |
\value TxProject |
|
238 |
*/ |
|
239 |
||
240 |
/*! |
|
241 |
\fn QTransform::QTransform(Qt::Initialization) |
|
242 |
\internal |
|
243 |
*/ |
|
244 |
||
245 |
/*! |
|
246 |
Constructs an identity matrix. |
|
247 |
||
248 |
All elements are set to zero except \c m11 and \c m22 (specifying |
|
249 |
the scale) and \c m13 which are set to 1. |
|
250 |
||
251 |
\sa reset() |
|
252 |
*/ |
|
253 |
QTransform::QTransform() |
|
254 |
: affine(true) |
|
255 |
, m_13(0), m_23(0), m_33(1) |
|
256 |
, m_type(TxNone) |
|
257 |
, m_dirty(TxNone) |
|
258 |
{ |
|
259 |
} |
|
260 |
||
261 |
/*! |
|
262 |
\fn QTransform::QTransform(qreal m11, qreal m12, qreal m13, qreal m21, qreal m22, qreal m23, qreal m31, qreal m32, qreal m33) |
|
263 |
||
264 |
Constructs a matrix with the elements, \a m11, \a m12, \a m13, |
|
265 |
\a m21, \a m22, \a m23, \a m31, \a m32, \a m33. |
|
266 |
||
267 |
\sa setMatrix() |
|
268 |
*/ |
|
269 |
QTransform::QTransform(qreal h11, qreal h12, qreal h13, |
|
270 |
qreal h21, qreal h22, qreal h23, |
|
271 |
qreal h31, qreal h32, qreal h33) |
|
272 |
: affine(h11, h12, h21, h22, h31, h32, true) |
|
273 |
, m_13(h13), m_23(h23), m_33(h33) |
|
274 |
, m_type(TxNone) |
|
275 |
, m_dirty(TxProject) |
|
276 |
{ |
|
277 |
} |
|
278 |
||
279 |
/*! |
|
280 |
\fn QTransform::QTransform(qreal m11, qreal m12, qreal m21, qreal m22, qreal dx, qreal dy) |
|
281 |
||
282 |
Constructs a matrix with the elements, \a m11, \a m12, \a m21, \a m22, \a dx and \a dy. |
|
283 |
||
284 |
\sa setMatrix() |
|
285 |
*/ |
|
286 |
QTransform::QTransform(qreal h11, qreal h12, qreal h21, |
|
287 |
qreal h22, qreal dx, qreal dy) |
|
288 |
: affine(h11, h12, h21, h22, dx, dy, true) |
|
289 |
, m_13(0), m_23(0), m_33(1) |
|
290 |
, m_type(TxNone) |
|
291 |
, m_dirty(TxShear) |
|
292 |
{ |
|
293 |
} |
|
294 |
||
295 |
/*! |
|
296 |
\fn QTransform::QTransform(const QMatrix &matrix) |
|
297 |
||
298 |
Constructs a matrix that is a copy of the given \a matrix. |
|
299 |
Note that the \c m13, \c m23, and \c m33 elements are set to 0, 0, |
|
300 |
and 1 respectively. |
|
301 |
*/ |
|
302 |
QTransform::QTransform(const QMatrix &mtx) |
|
303 |
: affine(mtx._m11, mtx._m12, mtx._m21, mtx._m22, mtx._dx, mtx._dy, true), |
|
304 |
m_13(0), m_23(0), m_33(1) |
|
305 |
, m_type(TxNone) |
|
306 |
, m_dirty(TxShear) |
|
307 |
{ |
|
308 |
} |
|
309 |
||
310 |
/*! |
|
311 |
Returns the adjoint of this matrix. |
|
312 |
*/ |
|
313 |
QTransform QTransform::adjoint() const |
|
314 |
{ |
|
315 |
qreal h11, h12, h13, |
|
316 |
h21, h22, h23, |
|
317 |
h31, h32, h33; |
|
318 |
h11 = affine._m22*m_33 - m_23*affine._dy; |
|
319 |
h21 = m_23*affine._dx - affine._m21*m_33; |
|
320 |
h31 = affine._m21*affine._dy - affine._m22*affine._dx; |
|
321 |
h12 = m_13*affine._dy - affine._m12*m_33; |
|
322 |
h22 = affine._m11*m_33 - m_13*affine._dx; |
|
323 |
h32 = affine._m12*affine._dx - affine._m11*affine._dy; |
|
324 |
h13 = affine._m12*m_23 - m_13*affine._m22; |
|
325 |
h23 = m_13*affine._m21 - affine._m11*m_23; |
|
326 |
h33 = affine._m11*affine._m22 - affine._m12*affine._m21; |
|
327 |
||
328 |
return QTransform(h11, h12, h13, |
|
329 |
h21, h22, h23, |
|
330 |
h31, h32, h33, true); |
|
331 |
} |
|
332 |
||
333 |
/*! |
|
334 |
Returns the transpose of this matrix. |
|
335 |
*/ |
|
336 |
QTransform QTransform::transposed() const |
|
337 |
{ |
|
338 |
QTransform t(affine._m11, affine._m21, affine._dx, |
|
339 |
affine._m12, affine._m22, affine._dy, |
|
340 |
m_13, m_23, m_33, true); |
|
341 |
t.m_type = m_type; |
|
342 |
t.m_dirty = m_dirty; |
|
343 |
return t; |
|
344 |
} |
|
345 |
||
346 |
/*! |
|
347 |
Returns an inverted copy of this matrix. |
|
348 |
||
349 |
If the matrix is singular (not invertible), the returned matrix is |
|
350 |
the identity matrix. If \a invertible is valid (i.e. not 0), its |
|
351 |
value is set to true if the matrix is invertible, otherwise it is |
|
352 |
set to false. |
|
353 |
||
354 |
\sa isInvertible() |
|
355 |
*/ |
|
356 |
QTransform QTransform::inverted(bool *invertible) const |
|
357 |
{ |
|
358 |
QTransform invert(true); |
|
359 |
bool inv = true; |
|
360 |
||
361 |
switch(inline_type()) { |
|
362 |
case TxNone: |
|
363 |
break; |
|
364 |
case TxTranslate: |
|
365 |
invert.affine._dx = -affine._dx; |
|
366 |
invert.affine._dy = -affine._dy; |
|
367 |
break; |
|
368 |
case TxScale: |
|
369 |
inv = !qFuzzyIsNull(affine._m11); |
|
370 |
inv &= !qFuzzyIsNull(affine._m22); |
|
371 |
if (inv) { |
|
372 |
invert.affine._m11 = 1. / affine._m11; |
|
373 |
invert.affine._m22 = 1. / affine._m22; |
|
374 |
invert.affine._dx = -affine._dx * invert.affine._m11; |
|
375 |
invert.affine._dy = -affine._dy * invert.affine._m22; |
|
376 |
} |
|
377 |
break; |
|
378 |
case TxRotate: |
|
379 |
case TxShear: |
|
380 |
invert.affine = affine.inverted(&inv); |
|
381 |
break; |
|
382 |
default: |
|
383 |
// general case |
|
384 |
qreal det = determinant(); |
|
385 |
inv = !qFuzzyIsNull(det); |
|
386 |
if (inv) |
|
387 |
invert = adjoint() / det; |
|
388 |
break; |
|
389 |
} |
|
390 |
||
391 |
if (invertible) |
|
392 |
*invertible = inv; |
|
393 |
||
394 |
if (inv) { |
|
395 |
// inverting doesn't change the type |
|
396 |
invert.m_type = m_type; |
|
397 |
invert.m_dirty = m_dirty; |
|
398 |
} |
|
399 |
||
400 |
return invert; |
|
401 |
} |
|
402 |
||
403 |
/*! |
|
404 |
Moves the coordinate system \a dx along the x axis and \a dy along |
|
405 |
the y axis, and returns a reference to the matrix. |
|
406 |
||
407 |
\sa setMatrix() |
|
408 |
*/ |
|
409 |
QTransform &QTransform::translate(qreal dx, qreal dy) |
|
410 |
{ |
|
411 |
if (dx == 0 && dy == 0) |
|
412 |
return *this; |
|
413 |
||
414 |
switch(inline_type()) { |
|
415 |
case TxNone: |
|
416 |
affine._dx = dx; |
|
417 |
affine._dy = dy; |
|
418 |
break; |
|
419 |
case TxTranslate: |
|
420 |
affine._dx += dx; |
|
421 |
affine._dy += dy; |
|
422 |
break; |
|
423 |
case TxScale: |
|
424 |
affine._dx += dx*affine._m11; |
|
425 |
affine._dy += dy*affine._m22; |
|
426 |
break; |
|
427 |
case TxProject: |
|
428 |
m_33 += dx*m_13 + dy*m_23; |
|
429 |
// Fall through |
|
430 |
case TxShear: |
|
431 |
case TxRotate: |
|
432 |
affine._dx += dx*affine._m11 + dy*affine._m21; |
|
433 |
affine._dy += dy*affine._m22 + dx*affine._m12; |
|
434 |
break; |
|
435 |
} |
|
436 |
if (m_dirty < TxTranslate) |
|
437 |
m_dirty = TxTranslate; |
|
438 |
return *this; |
|
439 |
} |
|
440 |
||
441 |
/*! |
|
442 |
Creates a matrix which corresponds to a translation of \a dx along |
|
443 |
the x axis and \a dy along the y axis. This is the same as |
|
444 |
QTransform().translate(dx, dy) but slightly faster. |
|
445 |
||
446 |
\since 4.5 |
|
447 |
*/ |
|
448 |
QTransform QTransform::fromTranslate(qreal dx, qreal dy) |
|
449 |
{ |
|
450 |
QTransform transform(1, 0, 0, 0, 1, 0, dx, dy, 1, true); |
|
451 |
if (dx == 0 && dy == 0) |
|
452 |
transform.m_type = TxNone; |
|
453 |
else |
|
454 |
transform.m_type = TxTranslate; |
|
455 |
transform.m_dirty = TxNone; |
|
456 |
return transform; |
|
457 |
} |
|
458 |
||
459 |
/*! |
|
460 |
Scales the coordinate system by \a sx horizontally and \a sy |
|
461 |
vertically, and returns a reference to the matrix. |
|
462 |
||
463 |
\sa setMatrix() |
|
464 |
*/ |
|
465 |
QTransform & QTransform::scale(qreal sx, qreal sy) |
|
466 |
{ |
|
467 |
if (sx == 1 && sy == 1) |
|
468 |
return *this; |
|
469 |
||
470 |
switch(inline_type()) { |
|
471 |
case TxNone: |
|
472 |
case TxTranslate: |
|
473 |
affine._m11 = sx; |
|
474 |
affine._m22 = sy; |
|
475 |
break; |
|
476 |
case TxProject: |
|
477 |
m_13 *= sx; |
|
478 |
m_23 *= sy; |
|
479 |
// fall through |
|
480 |
case TxRotate: |
|
481 |
case TxShear: |
|
482 |
affine._m12 *= sx; |
|
483 |
affine._m21 *= sy; |
|
484 |
// fall through |
|
485 |
case TxScale: |
|
486 |
affine._m11 *= sx; |
|
487 |
affine._m22 *= sy; |
|
488 |
break; |
|
489 |
} |
|
490 |
if (m_dirty < TxScale) |
|
491 |
m_dirty = TxScale; |
|
492 |
return *this; |
|
493 |
} |
|
494 |
||
495 |
/*! |
|
496 |
Creates a matrix which corresponds to a scaling of |
|
497 |
\a sx horizontally and \a sy vertically. |
|
498 |
This is the same as QTransform().scale(sx, sy) but slightly faster. |
|
499 |
||
500 |
\since 4.5 |
|
501 |
*/ |
|
502 |
QTransform QTransform::fromScale(qreal sx, qreal sy) |
|
503 |
{ |
|
504 |
QTransform transform(sx, 0, 0, 0, sy, 0, 0, 0, 1, true); |
|
505 |
if (sx == 1. && sy == 1.) |
|
506 |
transform.m_type = TxNone; |
|
507 |
else |
|
508 |
transform.m_type = TxScale; |
|
509 |
transform.m_dirty = TxNone; |
|
510 |
return transform; |
|
511 |
} |
|
512 |
||
513 |
/*! |
|
514 |
Shears the coordinate system by \a sh horizontally and \a sv |
|
515 |
vertically, and returns a reference to the matrix. |
|
516 |
||
517 |
\sa setMatrix() |
|
518 |
*/ |
|
519 |
QTransform & QTransform::shear(qreal sh, qreal sv) |
|
520 |
{ |
|
521 |
if (sh == 0 && sv == 0) |
|
522 |
return *this; |
|
523 |
||
524 |
switch(inline_type()) { |
|
525 |
case TxNone: |
|
526 |
case TxTranslate: |
|
527 |
affine._m12 = sv; |
|
528 |
affine._m21 = sh; |
|
529 |
break; |
|
530 |
case TxScale: |
|
531 |
affine._m12 = sv*affine._m22; |
|
532 |
affine._m21 = sh*affine._m11; |
|
533 |
break; |
|
534 |
case TxProject: { |
|
535 |
qreal tm13 = sv*m_23; |
|
536 |
qreal tm23 = sh*m_13; |
|
537 |
m_13 += tm13; |
|
538 |
m_23 += tm23; |
|
539 |
} |
|
540 |
// fall through |
|
541 |
case TxRotate: |
|
542 |
case TxShear: { |
|
543 |
qreal tm11 = sv*affine._m21; |
|
544 |
qreal tm22 = sh*affine._m12; |
|
545 |
qreal tm12 = sv*affine._m22; |
|
546 |
qreal tm21 = sh*affine._m11; |
|
547 |
affine._m11 += tm11; affine._m12 += tm12; |
|
548 |
affine._m21 += tm21; affine._m22 += tm22; |
|
549 |
break; |
|
550 |
} |
|
551 |
} |
|
552 |
if (m_dirty < TxShear) |
|
553 |
m_dirty = TxShear; |
|
554 |
return *this; |
|
555 |
} |
|
556 |
||
557 |
const qreal deg2rad = qreal(0.017453292519943295769); // pi/180 |
|
558 |
const qreal inv_dist_to_plane = 1. / 1024.; |
|
559 |
||
560 |
/*! |
|
561 |
\fn QTransform &QTransform::rotate(qreal angle, Qt::Axis axis) |
|
562 |
||
563 |
Rotates the coordinate system counterclockwise by the given \a angle |
|
564 |
about the specified \a axis and returns a reference to the matrix. |
|
565 |
||
566 |
Note that if you apply a QTransform to a point defined in widget |
|
567 |
coordinates, the direction of the rotation will be clockwise |
|
568 |
because the y-axis points downwards. |
|
569 |
||
570 |
The angle is specified in degrees. |
|
571 |
||
572 |
\sa setMatrix() |
|
573 |
*/ |
|
574 |
QTransform & QTransform::rotate(qreal a, Qt::Axis axis) |
|
575 |
{ |
|
576 |
if (a == 0) |
|
577 |
return *this; |
|
578 |
||
579 |
qreal sina = 0; |
|
580 |
qreal cosa = 0; |
|
581 |
if (a == 90. || a == -270.) |
|
582 |
sina = 1.; |
|
583 |
else if (a == 270. || a == -90.) |
|
584 |
sina = -1.; |
|
585 |
else if (a == 180.) |
|
586 |
cosa = -1.; |
|
587 |
else{ |
|
588 |
qreal b = deg2rad*a; // convert to radians |
|
589 |
sina = qSin(b); // fast and convenient |
|
590 |
cosa = qCos(b); |
|
591 |
} |
|
592 |
||
593 |
if (axis == Qt::ZAxis) { |
|
594 |
switch(inline_type()) { |
|
595 |
case TxNone: |
|
596 |
case TxTranslate: |
|
597 |
affine._m11 = cosa; |
|
598 |
affine._m12 = sina; |
|
599 |
affine._m21 = -sina; |
|
600 |
affine._m22 = cosa; |
|
601 |
break; |
|
602 |
case TxScale: { |
|
603 |
qreal tm11 = cosa*affine._m11; |
|
604 |
qreal tm12 = sina*affine._m22; |
|
605 |
qreal tm21 = -sina*affine._m11; |
|
606 |
qreal tm22 = cosa*affine._m22; |
|
607 |
affine._m11 = tm11; affine._m12 = tm12; |
|
608 |
affine._m21 = tm21; affine._m22 = tm22; |
|
609 |
break; |
|
610 |
} |
|
611 |
case TxProject: { |
|
612 |
qreal tm13 = cosa*m_13 + sina*m_23; |
|
613 |
qreal tm23 = -sina*m_13 + cosa*m_23; |
|
614 |
m_13 = tm13; |
|
615 |
m_23 = tm23; |
|
616 |
// fall through |
|
617 |
} |
|
618 |
case TxRotate: |
|
619 |
case TxShear: { |
|
620 |
qreal tm11 = cosa*affine._m11 + sina*affine._m21; |
|
621 |
qreal tm12 = cosa*affine._m12 + sina*affine._m22; |
|
622 |
qreal tm21 = -sina*affine._m11 + cosa*affine._m21; |
|
623 |
qreal tm22 = -sina*affine._m12 + cosa*affine._m22; |
|
624 |
affine._m11 = tm11; affine._m12 = tm12; |
|
625 |
affine._m21 = tm21; affine._m22 = tm22; |
|
626 |
break; |
|
627 |
} |
|
628 |
} |
|
629 |
if (m_dirty < TxRotate) |
|
630 |
m_dirty = TxRotate; |
|
631 |
} else { |
|
632 |
QTransform result; |
|
633 |
if (axis == Qt::YAxis) { |
|
634 |
result.affine._m11 = cosa; |
|
635 |
result.m_13 = -sina * inv_dist_to_plane; |
|
636 |
} else { |
|
637 |
result.affine._m22 = cosa; |
|
638 |
result.m_23 = -sina * inv_dist_to_plane; |
|
639 |
} |
|
640 |
result.m_type = TxProject; |
|
641 |
*this = result * *this; |
|
642 |
} |
|
643 |
||
644 |
return *this; |
|
645 |
} |
|
646 |
||
647 |
/*! |
|
648 |
\fn QTransform & QTransform::rotateRadians(qreal angle, Qt::Axis axis) |
|
649 |
||
650 |
Rotates the coordinate system counterclockwise by the given \a angle |
|
651 |
about the specified \a axis and returns a reference to the matrix. |
|
652 |
||
653 |
Note that if you apply a QTransform to a point defined in widget |
|
654 |
coordinates, the direction of the rotation will be clockwise |
|
655 |
because the y-axis points downwards. |
|
656 |
||
657 |
The angle is specified in radians. |
|
658 |
||
659 |
\sa setMatrix() |
|
660 |
*/ |
|
661 |
QTransform & QTransform::rotateRadians(qreal a, Qt::Axis axis) |
|
662 |
{ |
|
663 |
qreal sina = qSin(a); |
|
664 |
qreal cosa = qCos(a); |
|
665 |
||
666 |
if (axis == Qt::ZAxis) { |
|
667 |
switch(inline_type()) { |
|
668 |
case TxNone: |
|
669 |
case TxTranslate: |
|
670 |
affine._m11 = cosa; |
|
671 |
affine._m12 = sina; |
|
672 |
affine._m21 = -sina; |
|
673 |
affine._m22 = cosa; |
|
674 |
break; |
|
675 |
case TxScale: { |
|
676 |
qreal tm11 = cosa*affine._m11; |
|
677 |
qreal tm12 = sina*affine._m22; |
|
678 |
qreal tm21 = -sina*affine._m11; |
|
679 |
qreal tm22 = cosa*affine._m22; |
|
680 |
affine._m11 = tm11; affine._m12 = tm12; |
|
681 |
affine._m21 = tm21; affine._m22 = tm22; |
|
682 |
break; |
|
683 |
} |
|
684 |
case TxProject: { |
|
685 |
qreal tm13 = cosa*m_13 + sina*m_23; |
|
686 |
qreal tm23 = -sina*m_13 + cosa*m_23; |
|
687 |
m_13 = tm13; |
|
688 |
m_23 = tm23; |
|
689 |
// fall through |
|
690 |
} |
|
691 |
case TxRotate: |
|
692 |
case TxShear: { |
|
693 |
qreal tm11 = cosa*affine._m11 + sina*affine._m21; |
|
694 |
qreal tm12 = cosa*affine._m12 + sina*affine._m22; |
|
695 |
qreal tm21 = -sina*affine._m11 + cosa*affine._m21; |
|
696 |
qreal tm22 = -sina*affine._m12 + cosa*affine._m22; |
|
697 |
affine._m11 = tm11; affine._m12 = tm12; |
|
698 |
affine._m21 = tm21; affine._m22 = tm22; |
|
699 |
break; |
|
700 |
} |
|
701 |
} |
|
702 |
if (m_dirty < TxRotate) |
|
703 |
m_dirty = TxRotate; |
|
704 |
} else { |
|
705 |
QTransform result; |
|
706 |
if (axis == Qt::YAxis) { |
|
707 |
result.affine._m11 = cosa; |
|
708 |
result.m_13 = -sina * inv_dist_to_plane; |
|
709 |
} else { |
|
710 |
result.affine._m22 = cosa; |
|
711 |
result.m_23 = -sina * inv_dist_to_plane; |
|
712 |
} |
|
713 |
result.m_type = TxProject; |
|
714 |
*this = result * *this; |
|
715 |
} |
|
716 |
return *this; |
|
717 |
} |
|
718 |
||
719 |
/*! |
|
720 |
\fn bool QTransform::operator==(const QTransform &matrix) const |
|
721 |
Returns true if this matrix is equal to the given \a matrix, |
|
722 |
otherwise returns false. |
|
723 |
*/ |
|
724 |
bool QTransform::operator==(const QTransform &o) const |
|
725 |
{ |
|
726 |
return affine._m11 == o.affine._m11 && |
|
727 |
affine._m12 == o.affine._m12 && |
|
728 |
affine._m21 == o.affine._m21 && |
|
729 |
affine._m22 == o.affine._m22 && |
|
730 |
affine._dx == o.affine._dx && |
|
731 |
affine._dy == o.affine._dy && |
|
732 |
m_13 == o.m_13 && |
|
733 |
m_23 == o.m_23 && |
|
734 |
m_33 == o.m_33; |
|
735 |
} |
|
736 |
||
737 |
/*! |
|
738 |
\fn bool QTransform::operator!=(const QTransform &matrix) const |
|
739 |
Returns true if this matrix is not equal to the given \a matrix, |
|
740 |
otherwise returns false. |
|
741 |
*/ |
|
742 |
bool QTransform::operator!=(const QTransform &o) const |
|
743 |
{ |
|
744 |
return !operator==(o); |
|
745 |
} |
|
746 |
||
747 |
/*! |
|
748 |
\fn QTransform & QTransform::operator*=(const QTransform &matrix) |
|
749 |
\overload |
|
750 |
||
751 |
Returns the result of multiplying this matrix by the given \a |
|
752 |
matrix. |
|
753 |
*/ |
|
754 |
QTransform & QTransform::operator*=(const QTransform &o) |
|
755 |
{ |
|
756 |
const TransformationType otherType = o.inline_type(); |
|
757 |
if (otherType == TxNone) |
|
758 |
return *this; |
|
759 |
||
760 |
const TransformationType thisType = inline_type(); |
|
761 |
if (thisType == TxNone) |
|
762 |
return operator=(o); |
|
763 |
||
764 |
TransformationType t = qMax(thisType, otherType); |
|
765 |
switch(t) { |
|
766 |
case TxNone: |
|
767 |
break; |
|
768 |
case TxTranslate: |
|
769 |
affine._dx += o.affine._dx; |
|
770 |
affine._dy += o.affine._dy; |
|
771 |
break; |
|
772 |
case TxScale: |
|
773 |
{ |
|
774 |
qreal m11 = affine._m11*o.affine._m11; |
|
775 |
qreal m22 = affine._m22*o.affine._m22; |
|
776 |
||
777 |
qreal m31 = affine._dx*o.affine._m11 + o.affine._dx; |
|
778 |
qreal m32 = affine._dy*o.affine._m22 + o.affine._dy; |
|
779 |
||
780 |
affine._m11 = m11; |
|
781 |
affine._m22 = m22; |
|
782 |
affine._dx = m31; affine._dy = m32; |
|
783 |
break; |
|
784 |
} |
|
785 |
case TxRotate: |
|
786 |
case TxShear: |
|
787 |
{ |
|
788 |
qreal m11 = affine._m11*o.affine._m11 + affine._m12*o.affine._m21; |
|
789 |
qreal m12 = affine._m11*o.affine._m12 + affine._m12*o.affine._m22; |
|
790 |
||
791 |
qreal m21 = affine._m21*o.affine._m11 + affine._m22*o.affine._m21; |
|
792 |
qreal m22 = affine._m21*o.affine._m12 + affine._m22*o.affine._m22; |
|
793 |
||
794 |
qreal m31 = affine._dx*o.affine._m11 + affine._dy*o.affine._m21 + o.affine._dx; |
|
795 |
qreal m32 = affine._dx*o.affine._m12 + affine._dy*o.affine._m22 + o.affine._dy; |
|
796 |
||
797 |
affine._m11 = m11; affine._m12 = m12; |
|
798 |
affine._m21 = m21; affine._m22 = m22; |
|
799 |
affine._dx = m31; affine._dy = m32; |
|
800 |
break; |
|
801 |
} |
|
802 |
case TxProject: |
|
803 |
{ |
|
804 |
qreal m11 = affine._m11*o.affine._m11 + affine._m12*o.affine._m21 + m_13*o.affine._dx; |
|
805 |
qreal m12 = affine._m11*o.affine._m12 + affine._m12*o.affine._m22 + m_13*o.affine._dy; |
|
806 |
qreal m13 = affine._m11*o.m_13 + affine._m12*o.m_23 + m_13*o.m_33; |
|
807 |
||
808 |
qreal m21 = affine._m21*o.affine._m11 + affine._m22*o.affine._m21 + m_23*o.affine._dx; |
|
809 |
qreal m22 = affine._m21*o.affine._m12 + affine._m22*o.affine._m22 + m_23*o.affine._dy; |
|
810 |
qreal m23 = affine._m21*o.m_13 + affine._m22*o.m_23 + m_23*o.m_33; |
|
811 |
||
812 |
qreal m31 = affine._dx*o.affine._m11 + affine._dy*o.affine._m21 + m_33*o.affine._dx; |
|
813 |
qreal m32 = affine._dx*o.affine._m12 + affine._dy*o.affine._m22 + m_33*o.affine._dy; |
|
814 |
qreal m33 = affine._dx*o.m_13 + affine._dy*o.m_23 + m_33*o.m_33; |
|
815 |
||
816 |
affine._m11 = m11; affine._m12 = m12; m_13 = m13; |
|
817 |
affine._m21 = m21; affine._m22 = m22; m_23 = m23; |
|
818 |
affine._dx = m31; affine._dy = m32; m_33 = m33; |
|
819 |
} |
|
820 |
} |
|
821 |
||
822 |
m_dirty = t; |
|
823 |
m_type = t; |
|
824 |
||
825 |
return *this; |
|
826 |
} |
|
827 |
||
828 |
/*! |
|
829 |
\fn QTransform QTransform::operator*(const QTransform &matrix) const |
|
830 |
Returns the result of multiplying this matrix by the given \a |
|
831 |
matrix. |
|
832 |
||
833 |
Note that matrix multiplication is not commutative, i.e. a*b != |
|
834 |
b*a. |
|
835 |
*/ |
|
836 |
QTransform QTransform::operator*(const QTransform &m) const |
|
837 |
{ |
|
838 |
const TransformationType otherType = m.inline_type(); |
|
839 |
if (otherType == TxNone) |
|
840 |
return *this; |
|
841 |
||
842 |
const TransformationType thisType = inline_type(); |
|
843 |
if (thisType == TxNone) |
|
844 |
return m; |
|
845 |
||
846 |
QTransform t(true); |
|
847 |
TransformationType type = qMax(thisType, otherType); |
|
848 |
switch(type) { |
|
849 |
case TxNone: |
|
850 |
break; |
|
851 |
case TxTranslate: |
|
852 |
t.affine._dx = affine._dx + m.affine._dx; |
|
853 |
t.affine._dy += affine._dy + m.affine._dy; |
|
854 |
break; |
|
855 |
case TxScale: |
|
856 |
{ |
|
857 |
qreal m11 = affine._m11*m.affine._m11; |
|
858 |
qreal m22 = affine._m22*m.affine._m22; |
|
859 |
||
860 |
qreal m31 = affine._dx*m.affine._m11 + m.affine._dx; |
|
861 |
qreal m32 = affine._dy*m.affine._m22 + m.affine._dy; |
|
862 |
||
863 |
t.affine._m11 = m11; |
|
864 |
t.affine._m22 = m22; |
|
865 |
t.affine._dx = m31; t.affine._dy = m32; |
|
866 |
break; |
|
867 |
} |
|
868 |
case TxRotate: |
|
869 |
case TxShear: |
|
870 |
{ |
|
871 |
qreal m11 = affine._m11*m.affine._m11 + affine._m12*m.affine._m21; |
|
872 |
qreal m12 = affine._m11*m.affine._m12 + affine._m12*m.affine._m22; |
|
873 |
||
874 |
qreal m21 = affine._m21*m.affine._m11 + affine._m22*m.affine._m21; |
|
875 |
qreal m22 = affine._m21*m.affine._m12 + affine._m22*m.affine._m22; |
|
876 |
||
877 |
qreal m31 = affine._dx*m.affine._m11 + affine._dy*m.affine._m21 + m.affine._dx; |
|
878 |
qreal m32 = affine._dx*m.affine._m12 + affine._dy*m.affine._m22 + m.affine._dy; |
|
879 |
||
880 |
t.affine._m11 = m11; t.affine._m12 = m12; |
|
881 |
t.affine._m21 = m21; t.affine._m22 = m22; |
|
882 |
t.affine._dx = m31; t.affine._dy = m32; |
|
883 |
break; |
|
884 |
} |
|
885 |
case TxProject: |
|
886 |
{ |
|
887 |
qreal m11 = affine._m11*m.affine._m11 + affine._m12*m.affine._m21 + m_13*m.affine._dx; |
|
888 |
qreal m12 = affine._m11*m.affine._m12 + affine._m12*m.affine._m22 + m_13*m.affine._dy; |
|
889 |
qreal m13 = affine._m11*m.m_13 + affine._m12*m.m_23 + m_13*m.m_33; |
|
890 |
||
891 |
qreal m21 = affine._m21*m.affine._m11 + affine._m22*m.affine._m21 + m_23*m.affine._dx; |
|
892 |
qreal m22 = affine._m21*m.affine._m12 + affine._m22*m.affine._m22 + m_23*m.affine._dy; |
|
893 |
qreal m23 = affine._m21*m.m_13 + affine._m22*m.m_23 + m_23*m.m_33; |
|
894 |
||
895 |
qreal m31 = affine._dx*m.affine._m11 + affine._dy*m.affine._m21 + m_33*m.affine._dx; |
|
896 |
qreal m32 = affine._dx*m.affine._m12 + affine._dy*m.affine._m22 + m_33*m.affine._dy; |
|
897 |
qreal m33 = affine._dx*m.m_13 + affine._dy*m.m_23 + m_33*m.m_33; |
|
898 |
||
899 |
t.affine._m11 = m11; t.affine._m12 = m12; t.m_13 = m13; |
|
900 |
t.affine._m21 = m21; t.affine._m22 = m22; t.m_23 = m23; |
|
901 |
t.affine._dx = m31; t.affine._dy = m32; t.m_33 = m33; |
|
902 |
} |
|
903 |
} |
|
904 |
||
905 |
t.m_dirty = type; |
|
906 |
t.m_type = type; |
|
907 |
||
908 |
return t; |
|
909 |
} |
|
910 |
||
911 |
/*! |
|
912 |
\fn QTransform & QTransform::operator*=(qreal scalar) |
|
913 |
\overload |
|
914 |
||
915 |
Returns the result of performing an element-wise multiplication of this |
|
916 |
matrix with the given \a scalar. |
|
917 |
*/ |
|
918 |
||
919 |
/*! |
|
920 |
\fn QTransform & QTransform::operator/=(qreal scalar) |
|
921 |
\overload |
|
922 |
||
923 |
Returns the result of performing an element-wise division of this |
|
924 |
matrix by the given \a scalar. |
|
925 |
*/ |
|
926 |
||
927 |
/*! |
|
928 |
\fn QTransform & QTransform::operator+=(qreal scalar) |
|
929 |
\overload |
|
930 |
||
931 |
Returns the matrix obtained by adding the given \a scalar to each |
|
932 |
element of this matrix. |
|
933 |
*/ |
|
934 |
||
935 |
/*! |
|
936 |
\fn QTransform & QTransform::operator-=(qreal scalar) |
|
937 |
\overload |
|
938 |
||
939 |
Returns the matrix obtained by subtracting the given \a scalar from each |
|
940 |
element of this matrix. |
|
941 |
*/ |
|
942 |
||
943 |
/*! |
|
944 |
Assigns the given \a matrix's values to this matrix. |
|
945 |
*/ |
|
946 |
QTransform & QTransform::operator=(const QTransform &matrix) |
|
947 |
{ |
|
948 |
affine._m11 = matrix.affine._m11; |
|
949 |
affine._m12 = matrix.affine._m12; |
|
950 |
affine._m21 = matrix.affine._m21; |
|
951 |
affine._m22 = matrix.affine._m22; |
|
952 |
affine._dx = matrix.affine._dx; |
|
953 |
affine._dy = matrix.affine._dy; |
|
954 |
m_13 = matrix.m_13; |
|
955 |
m_23 = matrix.m_23; |
|
956 |
m_33 = matrix.m_33; |
|
957 |
m_type = matrix.m_type; |
|
958 |
m_dirty = matrix.m_dirty; |
|
959 |
||
960 |
return *this; |
|
961 |
} |
|
962 |
||
963 |
/*! |
|
964 |
Resets the matrix to an identity matrix, i.e. all elements are set |
|
965 |
to zero, except \c m11 and \c m22 (specifying the scale) and \c m33 |
|
966 |
which are set to 1. |
|
967 |
||
968 |
\sa QTransform(), isIdentity(), {QTransform#Basic Matrix |
|
969 |
Operations}{Basic Matrix Operations} |
|
970 |
*/ |
|
971 |
void QTransform::reset() |
|
972 |
{ |
|
973 |
affine._m11 = affine._m22 = m_33 = 1.0; |
|
974 |
affine._m12 = m_13 = affine._m21 = m_23 = affine._dx = affine._dy = 0; |
|
975 |
m_type = TxNone; |
|
976 |
m_dirty = TxNone; |
|
977 |
} |
|
978 |
||
979 |
#ifndef QT_NO_DATASTREAM |
|
980 |
/*! |
|
981 |
\fn QDataStream &operator<<(QDataStream &stream, const QTransform &matrix) |
|
982 |
\since 4.3 |
|
983 |
\relates QTransform |
|
984 |
||
985 |
Writes the given \a matrix to the given \a stream and returns a |
|
986 |
reference to the stream. |
|
987 |
||
988 |
\sa {Format of the QDataStream Operators} |
|
989 |
*/ |
|
990 |
QDataStream & operator<<(QDataStream &s, const QTransform &m) |
|
991 |
{ |
|
992 |
s << double(m.m11()) |
|
993 |
<< double(m.m12()) |
|
994 |
<< double(m.m13()) |
|
995 |
<< double(m.m21()) |
|
996 |
<< double(m.m22()) |
|
997 |
<< double(m.m23()) |
|
998 |
<< double(m.m31()) |
|
999 |
<< double(m.m32()) |
|
1000 |
<< double(m.m33()); |
|
1001 |
return s; |
|
1002 |
} |
|
1003 |
||
1004 |
/*! |
|
1005 |
\fn QDataStream &operator>>(QDataStream &stream, QTransform &matrix) |
|
1006 |
\since 4.3 |
|
1007 |
\relates QTransform |
|
1008 |
||
1009 |
Reads the given \a matrix from the given \a stream and returns a |
|
1010 |
reference to the stream. |
|
1011 |
||
1012 |
\sa {Format of the QDataStream Operators} |
|
1013 |
*/ |
|
1014 |
QDataStream & operator>>(QDataStream &s, QTransform &t) |
|
1015 |
{ |
|
1016 |
double m11, m12, m13, |
|
1017 |
m21, m22, m23, |
|
1018 |
m31, m32, m33; |
|
1019 |
||
1020 |
s >> m11; |
|
1021 |
s >> m12; |
|
1022 |
s >> m13; |
|
1023 |
s >> m21; |
|
1024 |
s >> m22; |
|
1025 |
s >> m23; |
|
1026 |
s >> m31; |
|
1027 |
s >> m32; |
|
1028 |
s >> m33; |
|
1029 |
t.setMatrix(m11, m12, m13, |
|
1030 |
m21, m22, m23, |
|
1031 |
m31, m32, m33); |
|
1032 |
return s; |
|
1033 |
} |
|
1034 |
||
1035 |
#endif // QT_NO_DATASTREAM |
|
1036 |
||
1037 |
#ifndef QT_NO_DEBUG_STREAM |
|
1038 |
QDebug operator<<(QDebug dbg, const QTransform &m) |
|
1039 |
{ |
|
1040 |
dbg.nospace() << "QTransform(" |
|
1041 |
<< "11=" << m.m11() |
|
1042 |
<< " 12=" << m.m12() |
|
1043 |
<< " 13=" << m.m13() |
|
1044 |
<< " 21=" << m.m21() |
|
1045 |
<< " 22=" << m.m22() |
|
1046 |
<< " 23=" << m.m23() |
|
1047 |
<< " 31=" << m.m31() |
|
1048 |
<< " 32=" << m.m32() |
|
1049 |
<< " 33=" << m.m33() |
|
1050 |
<< ')'; |
|
1051 |
return dbg.space(); |
|
1052 |
} |
|
1053 |
#endif |
|
1054 |
||
1055 |
/*! |
|
1056 |
\fn QPoint operator*(const QPoint &point, const QTransform &matrix) |
|
1057 |
\relates QTransform |
|
1058 |
||
1059 |
This is the same as \a{matrix}.map(\a{point}). |
|
1060 |
||
1061 |
\sa QTransform::map() |
|
1062 |
*/ |
|
1063 |
QPoint QTransform::map(const QPoint &p) const |
|
1064 |
{ |
|
1065 |
qreal fx = p.x(); |
|
1066 |
qreal fy = p.y(); |
|
1067 |
||
1068 |
qreal x = 0, y = 0; |
|
1069 |
||
1070 |
TransformationType t = inline_type(); |
|
1071 |
switch(t) { |
|
1072 |
case TxNone: |
|
1073 |
x = fx; |
|
1074 |
y = fy; |
|
1075 |
break; |
|
1076 |
case TxTranslate: |
|
1077 |
x = fx + affine._dx; |
|
1078 |
y = fy + affine._dy; |
|
1079 |
break; |
|
1080 |
case TxScale: |
|
1081 |
x = affine._m11 * fx + affine._dx; |
|
1082 |
y = affine._m22 * fy + affine._dy; |
|
1083 |
break; |
|
1084 |
case TxRotate: |
|
1085 |
case TxShear: |
|
1086 |
case TxProject: |
|
1087 |
x = affine._m11 * fx + affine._m21 * fy + affine._dx; |
|
1088 |
y = affine._m12 * fx + affine._m22 * fy + affine._dy; |
|
1089 |
if (t == TxProject) { |
|
1090 |
qreal w = 1./(m_13 * fx + m_23 * fy + m_33); |
|
1091 |
x *= w; |
|
1092 |
y *= w; |
|
1093 |
} |
|
1094 |
} |
|
1095 |
return QPoint(qRound(x), qRound(y)); |
|
1096 |
} |
|
1097 |
||
1098 |
||
1099 |
/*! |
|
1100 |
\fn QPointF operator*(const QPointF &point, const QTransform &matrix) |
|
1101 |
\relates QTransform |
|
1102 |
||
1103 |
Same as \a{matrix}.map(\a{point}). |
|
1104 |
||
1105 |
\sa QTransform::map() |
|
1106 |
*/ |
|
1107 |
||
1108 |
/*! |
|
1109 |
\overload |
|
1110 |
||
1111 |
Creates and returns a QPointF object that is a copy of the given point, |
|
1112 |
\a p, mapped into the coordinate system defined by this matrix. |
|
1113 |
*/ |
|
1114 |
QPointF QTransform::map(const QPointF &p) const |
|
1115 |
{ |
|
1116 |
qreal fx = p.x(); |
|
1117 |
qreal fy = p.y(); |
|
1118 |
||
1119 |
qreal x = 0, y = 0; |
|
1120 |
||
1121 |
TransformationType t = inline_type(); |
|
1122 |
switch(t) { |
|
1123 |
case TxNone: |
|
1124 |
x = fx; |
|
1125 |
y = fy; |
|
1126 |
break; |
|
1127 |
case TxTranslate: |
|
1128 |
x = fx + affine._dx; |
|
1129 |
y = fy + affine._dy; |
|
1130 |
break; |
|
1131 |
case TxScale: |
|
1132 |
x = affine._m11 * fx + affine._dx; |
|
1133 |
y = affine._m22 * fy + affine._dy; |
|
1134 |
break; |
|
1135 |
case TxRotate: |
|
1136 |
case TxShear: |
|
1137 |
case TxProject: |
|
1138 |
x = affine._m11 * fx + affine._m21 * fy + affine._dx; |
|
1139 |
y = affine._m12 * fx + affine._m22 * fy + affine._dy; |
|
1140 |
if (t == TxProject) { |
|
1141 |
qreal w = 1./(m_13 * fx + m_23 * fy + m_33); |
|
1142 |
x *= w; |
|
1143 |
y *= w; |
|
1144 |
} |
|
1145 |
} |
|
1146 |
return QPointF(x, y); |
|
1147 |
} |
|
1148 |
||
1149 |
/*! |
|
1150 |
\fn QPoint QTransform::map(const QPoint &point) const |
|
1151 |
\overload |
|
1152 |
||
1153 |
Creates and returns a QPoint object that is a copy of the given \a |
|
1154 |
point, mapped into the coordinate system defined by this |
|
1155 |
matrix. Note that the transformed coordinates are rounded to the |
|
1156 |
nearest integer. |
|
1157 |
*/ |
|
1158 |
||
1159 |
/*! |
|
1160 |
\fn QLineF operator*(const QLineF &line, const QTransform &matrix) |
|
1161 |
\relates QTransform |
|
1162 |
||
1163 |
This is the same as \a{matrix}.map(\a{line}). |
|
1164 |
||
1165 |
\sa QTransform::map() |
|
1166 |
*/ |
|
1167 |
||
1168 |
/*! |
|
1169 |
\fn QLine operator*(const QLine &line, const QTransform &matrix) |
|
1170 |
\relates QTransform |
|
1171 |
||
1172 |
This is the same as \a{matrix}.map(\a{line}). |
|
1173 |
||
1174 |
\sa QTransform::map() |
|
1175 |
*/ |
|
1176 |
||
1177 |
/*! |
|
1178 |
\overload |
|
1179 |
||
1180 |
Creates and returns a QLineF object that is a copy of the given line, |
|
1181 |
\a l, mapped into the coordinate system defined by this matrix. |
|
1182 |
*/ |
|
1183 |
QLine QTransform::map(const QLine &l) const |
|
1184 |
{ |
|
1185 |
qreal fx1 = l.x1(); |
|
1186 |
qreal fy1 = l.y1(); |
|
1187 |
qreal fx2 = l.x2(); |
|
1188 |
qreal fy2 = l.y2(); |
|
1189 |
||
1190 |
qreal x1 = 0, y1 = 0, x2 = 0, y2 = 0; |
|
1191 |
||
1192 |
TransformationType t = inline_type(); |
|
1193 |
switch(t) { |
|
1194 |
case TxNone: |
|
1195 |
x1 = fx1; |
|
1196 |
y1 = fy1; |
|
1197 |
x2 = fx2; |
|
1198 |
y2 = fy2; |
|
1199 |
break; |
|
1200 |
case TxTranslate: |
|
1201 |
x1 = fx1 + affine._dx; |
|
1202 |
y1 = fy1 + affine._dy; |
|
1203 |
x2 = fx2 + affine._dx; |
|
1204 |
y2 = fy2 + affine._dy; |
|
1205 |
break; |
|
1206 |
case TxScale: |
|
1207 |
x1 = affine._m11 * fx1 + affine._dx; |
|
1208 |
y1 = affine._m22 * fy1 + affine._dy; |
|
1209 |
x2 = affine._m11 * fx2 + affine._dx; |
|
1210 |
y2 = affine._m22 * fy2 + affine._dy; |
|
1211 |
break; |
|
1212 |
case TxRotate: |
|
1213 |
case TxShear: |
|
1214 |
case TxProject: |
|
1215 |
x1 = affine._m11 * fx1 + affine._m21 * fy1 + affine._dx; |
|
1216 |
y1 = affine._m12 * fx1 + affine._m22 * fy1 + affine._dy; |
|
1217 |
x2 = affine._m11 * fx2 + affine._m21 * fy2 + affine._dx; |
|
1218 |
y2 = affine._m12 * fx2 + affine._m22 * fy2 + affine._dy; |
|
1219 |
if (t == TxProject) { |
|
1220 |
qreal w = 1./(m_13 * fx1 + m_23 * fy1 + m_33); |
|
1221 |
x1 *= w; |
|
1222 |
y1 *= w; |
|
1223 |
w = 1./(m_13 * fx2 + m_23 * fy2 + m_33); |
|
1224 |
x2 *= w; |
|
1225 |
y2 *= w; |
|
1226 |
} |
|
1227 |
} |
|
1228 |
return QLine(qRound(x1), qRound(y1), qRound(x2), qRound(y2)); |
|
1229 |
} |
|
1230 |
||
1231 |
/*! |
|
1232 |
\overload |
|
1233 |
||
1234 |
\fn QLineF QTransform::map(const QLineF &line) const |
|
1235 |
||
1236 |
Creates and returns a QLine object that is a copy of the given \a |
|
1237 |
line, mapped into the coordinate system defined by this matrix. |
|
1238 |
Note that the transformed coordinates are rounded to the nearest |
|
1239 |
integer. |
|
1240 |
*/ |
|
1241 |
||
1242 |
QLineF QTransform::map(const QLineF &l) const |
|
1243 |
{ |
|
1244 |
qreal fx1 = l.x1(); |
|
1245 |
qreal fy1 = l.y1(); |
|
1246 |
qreal fx2 = l.x2(); |
|
1247 |
qreal fy2 = l.y2(); |
|
1248 |
||
1249 |
qreal x1 = 0, y1 = 0, x2 = 0, y2 = 0; |
|
1250 |
||
1251 |
TransformationType t = inline_type(); |
|
1252 |
switch(t) { |
|
1253 |
case TxNone: |
|
1254 |
x1 = fx1; |
|
1255 |
y1 = fy1; |
|
1256 |
x2 = fx2; |
|
1257 |
y2 = fy2; |
|
1258 |
break; |
|
1259 |
case TxTranslate: |
|
1260 |
x1 = fx1 + affine._dx; |
|
1261 |
y1 = fy1 + affine._dy; |
|
1262 |
x2 = fx2 + affine._dx; |
|
1263 |
y2 = fy2 + affine._dy; |
|
1264 |
break; |
|
1265 |
case TxScale: |
|
1266 |
x1 = affine._m11 * fx1 + affine._dx; |
|
1267 |
y1 = affine._m22 * fy1 + affine._dy; |
|
1268 |
x2 = affine._m11 * fx2 + affine._dx; |
|
1269 |
y2 = affine._m22 * fy2 + affine._dy; |
|
1270 |
break; |
|
1271 |
case TxRotate: |
|
1272 |
case TxShear: |
|
1273 |
case TxProject: |
|
1274 |
x1 = affine._m11 * fx1 + affine._m21 * fy1 + affine._dx; |
|
1275 |
y1 = affine._m12 * fx1 + affine._m22 * fy1 + affine._dy; |
|
1276 |
x2 = affine._m11 * fx2 + affine._m21 * fy2 + affine._dx; |
|
1277 |
y2 = affine._m12 * fx2 + affine._m22 * fy2 + affine._dy; |
|
1278 |
if (t == TxProject) { |
|
1279 |
qreal w = 1./(m_13 * fx1 + m_23 * fy1 + m_33); |
|
1280 |
x1 *= w; |
|
1281 |
y1 *= w; |
|
1282 |
w = 1./(m_13 * fx2 + m_23 * fy2 + m_33); |
|
1283 |
x2 *= w; |
|
1284 |
y2 *= w; |
|
1285 |
} |
|
1286 |
} |
|
1287 |
return QLineF(x1, y1, x2, y2); |
|
1288 |
} |
|
1289 |
||
1290 |
static QPolygonF mapProjective(const QTransform &transform, const QPolygonF &poly) |
|
1291 |
{ |
|
1292 |
if (poly.size() == 0) |
|
1293 |
return poly; |
|
1294 |
||
1295 |
if (poly.size() == 1) |
|
1296 |
return QPolygonF() << transform.map(poly.at(0)); |
|
1297 |
||
1298 |
QPainterPath path; |
|
1299 |
path.addPolygon(poly); |
|
1300 |
||
1301 |
path = transform.map(path); |
|
1302 |
||
1303 |
QPolygonF result; |
|
1304 |
for (int i = 0; i < path.elementCount(); ++i) |
|
1305 |
result << path.elementAt(i); |
|
1306 |
return result; |
|
1307 |
} |
|
1308 |
||
1309 |
||
1310 |
/*! |
|
1311 |
\fn QPolygonF operator *(const QPolygonF &polygon, const QTransform &matrix) |
|
1312 |
\since 4.3 |
|
1313 |
\relates QTransform |
|
1314 |
||
1315 |
This is the same as \a{matrix}.map(\a{polygon}). |
|
1316 |
||
1317 |
\sa QTransform::map() |
|
1318 |
*/ |
|
1319 |
||
1320 |
/*! |
|
1321 |
\fn QPolygon operator*(const QPolygon &polygon, const QTransform &matrix) |
|
1322 |
\relates QTransform |
|
1323 |
||
1324 |
This is the same as \a{matrix}.map(\a{polygon}). |
|
1325 |
||
1326 |
\sa QTransform::map() |
|
1327 |
*/ |
|
1328 |
||
1329 |
/*! |
|
1330 |
\fn QPolygonF QTransform::map(const QPolygonF &polygon) const |
|
1331 |
\overload |
|
1332 |
||
1333 |
Creates and returns a QPolygonF object that is a copy of the given |
|
1334 |
\a polygon, mapped into the coordinate system defined by this |
|
1335 |
matrix. |
|
1336 |
*/ |
|
1337 |
QPolygonF QTransform::map(const QPolygonF &a) const |
|
1338 |
{ |
|
1339 |
TransformationType t = inline_type(); |
|
1340 |
if (t <= TxTranslate) |
|
1341 |
return a.translated(affine._dx, affine._dy); |
|
1342 |
||
1343 |
if (t >= QTransform::TxProject) |
|
1344 |
return mapProjective(*this, a); |
|
1345 |
||
1346 |
int size = a.size(); |
|
1347 |
int i; |
|
1348 |
QPolygonF p(size); |
|
1349 |
const QPointF *da = a.constData(); |
|
1350 |
QPointF *dp = p.data(); |
|
1351 |
||
1352 |
for(i = 0; i < size; ++i) { |
|
1353 |
MAP(da[i].xp, da[i].yp, dp[i].xp, dp[i].yp); |
|
1354 |
} |
|
1355 |
return p; |
|
1356 |
} |
|
1357 |
||
1358 |
/*! |
|
1359 |
\fn QPolygon QTransform::map(const QPolygon &polygon) const |
|
1360 |
\overload |
|
1361 |
||
1362 |
Creates and returns a QPolygon object that is a copy of the given |
|
1363 |
\a polygon, mapped into the coordinate system defined by this |
|
1364 |
matrix. Note that the transformed coordinates are rounded to the |
|
1365 |
nearest integer. |
|
1366 |
*/ |
|
1367 |
QPolygon QTransform::map(const QPolygon &a) const |
|
1368 |
{ |
|
1369 |
TransformationType t = inline_type(); |
|
1370 |
if (t <= TxTranslate) |
|
1371 |
return a.translated(qRound(affine._dx), qRound(affine._dy)); |
|
1372 |
||
1373 |
if (t >= QTransform::TxProject) |
|
1374 |
return mapProjective(*this, QPolygonF(a)).toPolygon(); |
|
1375 |
||
1376 |
int size = a.size(); |
|
1377 |
int i; |
|
1378 |
QPolygon p(size); |
|
1379 |
const QPoint *da = a.constData(); |
|
1380 |
QPoint *dp = p.data(); |
|
1381 |
||
1382 |
for(i = 0; i < size; ++i) { |
|
1383 |
qreal nx = 0, ny = 0; |
|
1384 |
MAP(da[i].xp, da[i].yp, nx, ny); |
|
1385 |
dp[i].xp = qRound(nx); |
|
1386 |
dp[i].yp = qRound(ny); |
|
1387 |
} |
|
1388 |
return p; |
|
1389 |
} |
|
1390 |
||
1391 |
/*! |
|
1392 |
\fn QRegion operator*(const QRegion ®ion, const QTransform &matrix) |
|
1393 |
\relates QTransform |
|
1394 |
||
1395 |
This is the same as \a{matrix}.map(\a{region}). |
|
1396 |
||
1397 |
\sa QTransform::map() |
|
1398 |
*/ |
|
1399 |
||
1400 |
extern QPainterPath qt_regionToPath(const QRegion ®ion); |
|
1401 |
||
1402 |
/*! |
|
1403 |
\fn QRegion QTransform::map(const QRegion ®ion) const |
|
1404 |
\overload |
|
1405 |
||
1406 |
Creates and returns a QRegion object that is a copy of the given |
|
1407 |
\a region, mapped into the coordinate system defined by this matrix. |
|
1408 |
||
1409 |
Calling this method can be rather expensive if rotations or |
|
1410 |
shearing are used. |
|
1411 |
*/ |
|
1412 |
QRegion QTransform::map(const QRegion &r) const |
|
1413 |
{ |
|
1414 |
TransformationType t = inline_type(); |
|
1415 |
if (t == TxNone) |
|
1416 |
return r; |
|
1417 |
||
1418 |
if (t == TxTranslate) { |
|
1419 |
QRegion copy(r); |
|
1420 |
copy.translate(qRound(affine._dx), qRound(affine._dy)); |
|
1421 |
return copy; |
|
1422 |
} |
|
1423 |
||
3
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
1424 |
if (t == TxScale && r.rectCount() == 1) |
0 | 1425 |
return QRegion(mapRect(r.boundingRect())); |
1426 |
||
1427 |
QPainterPath p = map(qt_regionToPath(r)); |
|
1428 |
return p.toFillPolygon(QTransform()).toPolygon(); |
|
1429 |
} |
|
1430 |
||
1431 |
struct QHomogeneousCoordinate |
|
1432 |
{ |
|
1433 |
qreal x; |
|
1434 |
qreal y; |
|
1435 |
qreal w; |
|
1436 |
||
1437 |
QHomogeneousCoordinate() {} |
|
1438 |
QHomogeneousCoordinate(qreal x_, qreal y_, qreal w_) : x(x_), y(y_), w(w_) {} |
|
1439 |
||
1440 |
const QPointF toPoint() const { |
|
1441 |
qreal iw = 1. / w; |
|
1442 |
return QPointF(x * iw, y * iw); |
|
1443 |
} |
|
1444 |
}; |
|
1445 |
||
1446 |
static inline QHomogeneousCoordinate mapHomogeneous(const QTransform &transform, const QPointF &p) |
|
1447 |
{ |
|
1448 |
QHomogeneousCoordinate c; |
|
1449 |
c.x = transform.m11() * p.x() + transform.m21() * p.y() + transform.m31(); |
|
1450 |
c.y = transform.m12() * p.x() + transform.m22() * p.y() + transform.m32(); |
|
1451 |
c.w = transform.m13() * p.x() + transform.m23() * p.y() + transform.m33(); |
|
1452 |
return c; |
|
1453 |
} |
|
1454 |
||
1455 |
static inline bool lineTo_clipped(QPainterPath &path, const QTransform &transform, const QPointF &a, const QPointF &b, |
|
1456 |
bool needsMoveTo, bool needsLineTo = true) |
|
1457 |
{ |
|
1458 |
QHomogeneousCoordinate ha = mapHomogeneous(transform, a); |
|
1459 |
QHomogeneousCoordinate hb = mapHomogeneous(transform, b); |
|
1460 |
||
1461 |
if (ha.w < Q_NEAR_CLIP && hb.w < Q_NEAR_CLIP) |
|
1462 |
return false; |
|
1463 |
||
1464 |
if (hb.w < Q_NEAR_CLIP) { |
|
1465 |
const qreal t = (Q_NEAR_CLIP - hb.w) / (ha.w - hb.w); |
|
1466 |
||
1467 |
hb.x += (ha.x - hb.x) * t; |
|
1468 |
hb.y += (ha.y - hb.y) * t; |
|
1469 |
hb.w = qreal(Q_NEAR_CLIP); |
|
1470 |
} else if (ha.w < Q_NEAR_CLIP) { |
|
1471 |
const qreal t = (Q_NEAR_CLIP - ha.w) / (hb.w - ha.w); |
|
1472 |
||
1473 |
ha.x += (hb.x - ha.x) * t; |
|
1474 |
ha.y += (hb.y - ha.y) * t; |
|
1475 |
ha.w = qreal(Q_NEAR_CLIP); |
|
1476 |
||
1477 |
const QPointF p = ha.toPoint(); |
|
1478 |
if (needsMoveTo) { |
|
1479 |
path.moveTo(p); |
|
1480 |
needsMoveTo = false; |
|
1481 |
} else { |
|
1482 |
path.lineTo(p); |
|
1483 |
} |
|
1484 |
} |
|
1485 |
||
1486 |
if (needsMoveTo) |
|
1487 |
path.moveTo(ha.toPoint()); |
|
1488 |
||
1489 |
if (needsLineTo) |
|
1490 |
path.lineTo(hb.toPoint()); |
|
1491 |
||
1492 |
return true; |
|
1493 |
} |
|
1494 |
||
1495 |
static inline bool cubicTo_clipped(QPainterPath &path, const QTransform &transform, const QPointF &a, const QPointF &b, const QPointF &c, const QPointF &d, bool needsMoveTo) |
|
1496 |
{ |
|
1497 |
// Convert projective xformed curves to line |
|
1498 |
// segments so they can be transformed more accurately |
|
1499 |
QPolygonF segment = QBezier::fromPoints(a, b, c, d).toPolygon(); |
|
1500 |
||
1501 |
for (int i = 0; i < segment.size() - 1; ++i) |
|
1502 |
if (lineTo_clipped(path, transform, segment.at(i), segment.at(i+1), needsMoveTo)) |
|
1503 |
needsMoveTo = false; |
|
1504 |
||
1505 |
return !needsMoveTo; |
|
1506 |
} |
|
1507 |
||
1508 |
static QPainterPath mapProjective(const QTransform &transform, const QPainterPath &path) |
|
1509 |
{ |
|
1510 |
QPainterPath result; |
|
1511 |
||
1512 |
QPointF last; |
|
1513 |
QPointF lastMoveTo; |
|
1514 |
bool needsMoveTo = true; |
|
1515 |
for (int i = 0; i < path.elementCount(); ++i) { |
|
1516 |
switch (path.elementAt(i).type) { |
|
1517 |
case QPainterPath::MoveToElement: |
|
1518 |
if (i > 0 && lastMoveTo != last) |
|
1519 |
lineTo_clipped(result, transform, last, lastMoveTo, needsMoveTo); |
|
1520 |
||
1521 |
lastMoveTo = path.elementAt(i); |
|
1522 |
last = path.elementAt(i); |
|
1523 |
needsMoveTo = true; |
|
1524 |
break; |
|
1525 |
case QPainterPath::LineToElement: |
|
1526 |
if (lineTo_clipped(result, transform, last, path.elementAt(i), needsMoveTo)) |
|
1527 |
needsMoveTo = false; |
|
1528 |
last = path.elementAt(i); |
|
1529 |
break; |
|
1530 |
case QPainterPath::CurveToElement: |
|
1531 |
if (cubicTo_clipped(result, transform, last, path.elementAt(i), path.elementAt(i+1), path.elementAt(i+2), needsMoveTo)) |
|
1532 |
needsMoveTo = false; |
|
1533 |
i += 2; |
|
1534 |
last = path.elementAt(i); |
|
1535 |
break; |
|
1536 |
default: |
|
1537 |
Q_ASSERT(false); |
|
1538 |
} |
|
1539 |
} |
|
1540 |
||
1541 |
if (path.elementCount() > 0 && lastMoveTo != last) |
|
1542 |
lineTo_clipped(result, transform, last, lastMoveTo, needsMoveTo, false); |
|
1543 |
||
1544 |
result.setFillRule(path.fillRule()); |
|
1545 |
return result; |
|
1546 |
} |
|
1547 |
||
1548 |
/*! |
|
1549 |
\fn QPainterPath operator *(const QPainterPath &path, const QTransform &matrix) |
|
1550 |
\since 4.3 |
|
1551 |
\relates QTransform |
|
1552 |
||
1553 |
This is the same as \a{matrix}.map(\a{path}). |
|
1554 |
||
1555 |
\sa QTransform::map() |
|
1556 |
*/ |
|
1557 |
||
1558 |
/*! |
|
1559 |
\overload |
|
1560 |
||
1561 |
Creates and returns a QPainterPath object that is a copy of the |
|
1562 |
given \a path, mapped into the coordinate system defined by this |
|
1563 |
matrix. |
|
1564 |
*/ |
|
1565 |
QPainterPath QTransform::map(const QPainterPath &path) const |
|
1566 |
{ |
|
1567 |
TransformationType t = inline_type(); |
|
1568 |
if (t == TxNone || path.isEmpty()) |
|
1569 |
return path; |
|
1570 |
||
1571 |
if (t >= TxProject) |
|
1572 |
return mapProjective(*this, path); |
|
1573 |
||
1574 |
QPainterPath copy = path; |
|
1575 |
||
1576 |
if (t == TxTranslate) { |
|
1577 |
copy.translate(affine._dx, affine._dy); |
|
1578 |
} else { |
|
1579 |
copy.detach(); |
|
1580 |
// Full xform |
|
1581 |
for (int i=0; i<path.elementCount(); ++i) { |
|
1582 |
QPainterPath::Element &e = copy.d_ptr->elements[i]; |
|
1583 |
MAP(e.x, e.y, e.x, e.y); |
|
1584 |
} |
|
1585 |
} |
|
1586 |
||
1587 |
return copy; |
|
1588 |
} |
|
1589 |
||
1590 |
/*! |
|
1591 |
\fn QPolygon QTransform::mapToPolygon(const QRect &rectangle) const |
|
1592 |
||
1593 |
Creates and returns a QPolygon representation of the given \a |
|
1594 |
rectangle, mapped into the coordinate system defined by this |
|
1595 |
matrix. |
|
1596 |
||
1597 |
The rectangle's coordinates are transformed using the following |
|
1598 |
formulas: |
|
1599 |
||
1600 |
\snippet doc/src/snippets/code/src_gui_painting_qtransform.cpp 1 |
|
1601 |
||
1602 |
Polygons and rectangles behave slightly differently when |
|
1603 |
transformed (due to integer rounding), so |
|
1604 |
\c{matrix.map(QPolygon(rectangle))} is not always the same as |
|
1605 |
\c{matrix.mapToPolygon(rectangle)}. |
|
1606 |
||
1607 |
\sa mapRect(), {QTransform#Basic Matrix Operations}{Basic Matrix |
|
1608 |
Operations} |
|
1609 |
*/ |
|
1610 |
QPolygon QTransform::mapToPolygon(const QRect &rect) const |
|
1611 |
{ |
|
1612 |
TransformationType t = inline_type(); |
|
1613 |
||
1614 |
QPolygon a(4); |
|
1615 |
qreal x[4] = { 0, 0, 0, 0 }, y[4] = { 0, 0, 0, 0 }; |
|
1616 |
if (t <= TxScale) { |
|
1617 |
x[0] = affine._m11*rect.x() + affine._dx; |
|
1618 |
y[0] = affine._m22*rect.y() + affine._dy; |
|
1619 |
qreal w = affine._m11*rect.width(); |
|
1620 |
qreal h = affine._m22*rect.height(); |
|
1621 |
if (w < 0) { |
|
1622 |
w = -w; |
|
1623 |
x[0] -= w; |
|
1624 |
} |
|
1625 |
if (h < 0) { |
|
1626 |
h = -h; |
|
1627 |
y[0] -= h; |
|
1628 |
} |
|
1629 |
x[1] = x[0]+w; |
|
1630 |
x[2] = x[1]; |
|
1631 |
x[3] = x[0]; |
|
1632 |
y[1] = y[0]; |
|
1633 |
y[2] = y[0]+h; |
|
1634 |
y[3] = y[2]; |
|
1635 |
} else { |
|
1636 |
qreal right = rect.x() + rect.width(); |
|
1637 |
qreal bottom = rect.y() + rect.height(); |
|
1638 |
MAP(rect.x(), rect.y(), x[0], y[0]); |
|
1639 |
MAP(right, rect.y(), x[1], y[1]); |
|
1640 |
MAP(right, bottom, x[2], y[2]); |
|
1641 |
MAP(rect.x(), bottom, x[3], y[3]); |
|
1642 |
} |
|
1643 |
||
1644 |
// all coordinates are correctly, tranform to a pointarray |
|
1645 |
// (rounding to the next integer) |
|
1646 |
a.setPoints(4, qRound(x[0]), qRound(y[0]), |
|
1647 |
qRound(x[1]), qRound(y[1]), |
|
1648 |
qRound(x[2]), qRound(y[2]), |
|
1649 |
qRound(x[3]), qRound(y[3])); |
|
1650 |
return a; |
|
1651 |
} |
|
1652 |
||
1653 |
/*! |
|
1654 |
Creates a transformation matrix, \a trans, that maps a unit square |
|
1655 |
to a four-sided polygon, \a quad. Returns true if the transformation |
|
1656 |
is constructed or false if such a transformation does not exist. |
|
1657 |
||
1658 |
\sa quadToSquare(), quadToQuad() |
|
1659 |
*/ |
|
1660 |
bool QTransform::squareToQuad(const QPolygonF &quad, QTransform &trans) |
|
1661 |
{ |
|
1662 |
if (quad.count() != 4) |
|
1663 |
return false; |
|
1664 |
||
1665 |
qreal dx0 = quad[0].x(); |
|
1666 |
qreal dx1 = quad[1].x(); |
|
1667 |
qreal dx2 = quad[2].x(); |
|
1668 |
qreal dx3 = quad[3].x(); |
|
1669 |
||
1670 |
qreal dy0 = quad[0].y(); |
|
1671 |
qreal dy1 = quad[1].y(); |
|
1672 |
qreal dy2 = quad[2].y(); |
|
1673 |
qreal dy3 = quad[3].y(); |
|
1674 |
||
1675 |
double ax = dx0 - dx1 + dx2 - dx3; |
|
1676 |
double ay = dy0 - dy1 + dy2 - dy3; |
|
1677 |
||
1678 |
if (!ax && !ay) { //afine transform |
|
1679 |
trans.setMatrix(dx1 - dx0, dy1 - dy0, 0, |
|
1680 |
dx2 - dx1, dy2 - dy1, 0, |
|
1681 |
dx0, dy0, 1); |
|
1682 |
} else { |
|
1683 |
double ax1 = dx1 - dx2; |
|
1684 |
double ax2 = dx3 - dx2; |
|
1685 |
double ay1 = dy1 - dy2; |
|
1686 |
double ay2 = dy3 - dy2; |
|
1687 |
||
1688 |
/*determinants */ |
|
1689 |
double gtop = ax * ay2 - ax2 * ay; |
|
1690 |
double htop = ax1 * ay - ax * ay1; |
|
1691 |
double bottom = ax1 * ay2 - ax2 * ay1; |
|
1692 |
||
1693 |
double a, b, c, d, e, f, g, h; /*i is always 1*/ |
|
1694 |
||
1695 |
if (!bottom) |
|
1696 |
return false; |
|
1697 |
||
1698 |
g = gtop/bottom; |
|
1699 |
h = htop/bottom; |
|
1700 |
||
1701 |
a = dx1 - dx0 + g * dx1; |
|
1702 |
b = dx3 - dx0 + h * dx3; |
|
1703 |
c = dx0; |
|
1704 |
d = dy1 - dy0 + g * dy1; |
|
1705 |
e = dy3 - dy0 + h * dy3; |
|
1706 |
f = dy0; |
|
1707 |
||
1708 |
trans.setMatrix(a, d, g, |
|
1709 |
b, e, h, |
|
1710 |
c, f, 1.0); |
|
1711 |
} |
|
1712 |
||
1713 |
return true; |
|
1714 |
} |
|
1715 |
||
1716 |
/*! |
|
1717 |
\fn bool QTransform::quadToSquare(const QPolygonF &quad, QTransform &trans) |
|
1718 |
||
1719 |
Creates a transformation matrix, \a trans, that maps a four-sided polygon, |
|
1720 |
\a quad, to a unit square. Returns true if the transformation is constructed |
|
1721 |
or false if such a transformation does not exist. |
|
1722 |
||
1723 |
\sa squareToQuad(), quadToQuad() |
|
1724 |
*/ |
|
1725 |
bool QTransform::quadToSquare(const QPolygonF &quad, QTransform &trans) |
|
1726 |
{ |
|
1727 |
if (!squareToQuad(quad, trans)) |
|
1728 |
return false; |
|
1729 |
||
1730 |
bool invertible = false; |
|
1731 |
trans = trans.inverted(&invertible); |
|
1732 |
||
1733 |
return invertible; |
|
1734 |
} |
|
1735 |
||
1736 |
/*! |
|
1737 |
Creates a transformation matrix, \a trans, that maps a four-sided |
|
1738 |
polygon, \a one, to another four-sided polygon, \a two. |
|
1739 |
Returns true if the transformation is possible; otherwise returns |
|
1740 |
false. |
|
1741 |
||
1742 |
This is a convenience method combining quadToSquare() and |
|
1743 |
squareToQuad() methods. It allows the input quad to be |
|
1744 |
transformed into any other quad. |
|
1745 |
||
1746 |
\sa squareToQuad(), quadToSquare() |
|
1747 |
*/ |
|
1748 |
bool QTransform::quadToQuad(const QPolygonF &one, |
|
1749 |
const QPolygonF &two, |
|
1750 |
QTransform &trans) |
|
1751 |
{ |
|
1752 |
QTransform stq; |
|
1753 |
if (!quadToSquare(one, trans)) |
|
1754 |
return false; |
|
1755 |
if (!squareToQuad(two, stq)) |
|
1756 |
return false; |
|
1757 |
trans *= stq; |
|
1758 |
//qDebug()<<"Final = "<<trans; |
|
1759 |
return true; |
|
1760 |
} |
|
1761 |
||
1762 |
/*! |
|
1763 |
Sets the matrix elements to the specified values, \a m11, |
|
1764 |
\a m12, \a m13 \a m21, \a m22, \a m23 \a m31, \a m32 and |
|
1765 |
\a m33. Note that this function replaces the previous values. |
|
1766 |
QTransform provides the translate(), rotate(), scale() and shear() |
|
1767 |
convenience functions to manipulate the various matrix elements |
|
1768 |
based on the currently defined coordinate system. |
|
1769 |
||
1770 |
\sa QTransform() |
|
1771 |
*/ |
|
1772 |
||
1773 |
void QTransform::setMatrix(qreal m11, qreal m12, qreal m13, |
|
1774 |
qreal m21, qreal m22, qreal m23, |
|
1775 |
qreal m31, qreal m32, qreal m33) |
|
1776 |
{ |
|
1777 |
affine._m11 = m11; affine._m12 = m12; m_13 = m13; |
|
1778 |
affine._m21 = m21; affine._m22 = m22; m_23 = m23; |
|
1779 |
affine._dx = m31; affine._dy = m32; m_33 = m33; |
|
1780 |
m_type = TxNone; |
|
1781 |
m_dirty = TxProject; |
|
1782 |
} |
|
1783 |
||
1784 |
static inline bool needsPerspectiveClipping(const QRectF &rect, const QTransform &transform) |
|
1785 |
{ |
|
1786 |
const qreal wx = qMin(transform.m13() * rect.left(), transform.m13() * rect.right()); |
|
1787 |
const qreal wy = qMin(transform.m23() * rect.top(), transform.m23() * rect.bottom()); |
|
1788 |
||
1789 |
return wx + wy + transform.m33() < Q_NEAR_CLIP; |
|
1790 |
} |
|
1791 |
||
1792 |
QRect QTransform::mapRect(const QRect &rect) const |
|
1793 |
{ |
|
1794 |
TransformationType t = inline_type(); |
|
1795 |
if (t <= TxTranslate) |
|
1796 |
return rect.translated(qRound(affine._dx), qRound(affine._dy)); |
|
1797 |
||
1798 |
if (t <= TxScale) { |
|
1799 |
int x = qRound(affine._m11*rect.x() + affine._dx); |
|
1800 |
int y = qRound(affine._m22*rect.y() + affine._dy); |
|
1801 |
int w = qRound(affine._m11*rect.width()); |
|
1802 |
int h = qRound(affine._m22*rect.height()); |
|
1803 |
if (w < 0) { |
|
1804 |
w = -w; |
|
1805 |
x -= w; |
|
1806 |
} |
|
1807 |
if (h < 0) { |
|
1808 |
h = -h; |
|
1809 |
y -= h; |
|
1810 |
} |
|
1811 |
return QRect(x, y, w, h); |
|
1812 |
} else if (t < TxProject || !needsPerspectiveClipping(rect, *this)) { |
|
1813 |
// see mapToPolygon for explanations of the algorithm. |
|
1814 |
qreal x = 0, y = 0; |
|
1815 |
MAP(rect.left(), rect.top(), x, y); |
|
1816 |
qreal xmin = x; |
|
1817 |
qreal ymin = y; |
|
1818 |
qreal xmax = x; |
|
1819 |
qreal ymax = y; |
|
1820 |
MAP(rect.right() + 1, rect.top(), x, y); |
|
1821 |
xmin = qMin(xmin, x); |
|
1822 |
ymin = qMin(ymin, y); |
|
1823 |
xmax = qMax(xmax, x); |
|
1824 |
ymax = qMax(ymax, y); |
|
1825 |
MAP(rect.right() + 1, rect.bottom() + 1, x, y); |
|
1826 |
xmin = qMin(xmin, x); |
|
1827 |
ymin = qMin(ymin, y); |
|
1828 |
xmax = qMax(xmax, x); |
|
1829 |
ymax = qMax(ymax, y); |
|
1830 |
MAP(rect.left(), rect.bottom() + 1, x, y); |
|
1831 |
xmin = qMin(xmin, x); |
|
1832 |
ymin = qMin(ymin, y); |
|
1833 |
xmax = qMax(xmax, x); |
|
1834 |
ymax = qMax(ymax, y); |
|
1835 |
return QRect(qRound(xmin), qRound(ymin), qRound(xmax)-qRound(xmin), qRound(ymax)-qRound(ymin)); |
|
1836 |
} else { |
|
1837 |
QPainterPath path; |
|
1838 |
path.addRect(rect); |
|
1839 |
return map(path).boundingRect().toRect(); |
|
1840 |
} |
|
1841 |
} |
|
1842 |
||
1843 |
/*! |
|
1844 |
\fn QRectF QTransform::mapRect(const QRectF &rectangle) const |
|
1845 |
||
1846 |
Creates and returns a QRectF object that is a copy of the given \a |
|
1847 |
rectangle, mapped into the coordinate system defined by this |
|
1848 |
matrix. |
|
1849 |
||
1850 |
The rectangle's coordinates are transformed using the following |
|
1851 |
formulas: |
|
1852 |
||
1853 |
\snippet doc/src/snippets/code/src_gui_painting_qtransform.cpp 2 |
|
1854 |
||
1855 |
If rotation or shearing has been specified, this function returns |
|
1856 |
the \e bounding rectangle. To retrieve the exact region the given |
|
1857 |
\a rectangle maps to, use the mapToPolygon() function instead. |
|
1858 |
||
1859 |
\sa mapToPolygon(), {QTransform#Basic Matrix Operations}{Basic Matrix |
|
1860 |
Operations} |
|
1861 |
*/ |
|
1862 |
QRectF QTransform::mapRect(const QRectF &rect) const |
|
1863 |
{ |
|
1864 |
TransformationType t = inline_type(); |
|
1865 |
if (t <= TxTranslate) |
|
1866 |
return rect.translated(affine._dx, affine._dy); |
|
1867 |
||
1868 |
if (t <= TxScale) { |
|
1869 |
qreal x = affine._m11*rect.x() + affine._dx; |
|
1870 |
qreal y = affine._m22*rect.y() + affine._dy; |
|
1871 |
qreal w = affine._m11*rect.width(); |
|
1872 |
qreal h = affine._m22*rect.height(); |
|
1873 |
if (w < 0) { |
|
1874 |
w = -w; |
|
1875 |
x -= w; |
|
1876 |
} |
|
1877 |
if (h < 0) { |
|
1878 |
h = -h; |
|
1879 |
y -= h; |
|
1880 |
} |
|
1881 |
return QRectF(x, y, w, h); |
|
1882 |
} else if (t < TxProject || !needsPerspectiveClipping(rect, *this)) { |
|
1883 |
qreal x = 0, y = 0; |
|
1884 |
MAP(rect.x(), rect.y(), x, y); |
|
1885 |
qreal xmin = x; |
|
1886 |
qreal ymin = y; |
|
1887 |
qreal xmax = x; |
|
1888 |
qreal ymax = y; |
|
1889 |
MAP(rect.x() + rect.width(), rect.y(), x, y); |
|
1890 |
xmin = qMin(xmin, x); |
|
1891 |
ymin = qMin(ymin, y); |
|
1892 |
xmax = qMax(xmax, x); |
|
1893 |
ymax = qMax(ymax, y); |
|
1894 |
MAP(rect.x() + rect.width(), rect.y() + rect.height(), x, y); |
|
1895 |
xmin = qMin(xmin, x); |
|
1896 |
ymin = qMin(ymin, y); |
|
1897 |
xmax = qMax(xmax, x); |
|
1898 |
ymax = qMax(ymax, y); |
|
1899 |
MAP(rect.x(), rect.y() + rect.height(), x, y); |
|
1900 |
xmin = qMin(xmin, x); |
|
1901 |
ymin = qMin(ymin, y); |
|
1902 |
xmax = qMax(xmax, x); |
|
1903 |
ymax = qMax(ymax, y); |
|
1904 |
return QRectF(xmin, ymin, xmax-xmin, ymax - ymin); |
|
1905 |
} else { |
|
1906 |
QPainterPath path; |
|
1907 |
path.addRect(rect); |
|
1908 |
return map(path).boundingRect(); |
|
1909 |
} |
|
1910 |
} |
|
1911 |
||
1912 |
/*! |
|
1913 |
\fn QRect QTransform::mapRect(const QRect &rectangle) const |
|
1914 |
\overload |
|
1915 |
||
1916 |
Creates and returns a QRect object that is a copy of the given \a |
|
1917 |
rectangle, mapped into the coordinate system defined by this |
|
1918 |
matrix. Note that the transformed coordinates are rounded to the |
|
1919 |
nearest integer. |
|
1920 |
*/ |
|
1921 |
||
1922 |
/*! |
|
1923 |
Maps the given coordinates \a x and \a y into the coordinate |
|
1924 |
system defined by this matrix. The resulting values are put in *\a |
|
1925 |
tx and *\a ty, respectively. |
|
1926 |
||
1927 |
The coordinates are transformed using the following formulas: |
|
1928 |
||
1929 |
\snippet doc/src/snippets/code/src_gui_painting_qtransform.cpp 3 |
|
1930 |
||
1931 |
The point (x, y) is the original point, and (x', y') is the |
|
1932 |
transformed point. |
|
1933 |
||
1934 |
\sa {QTransform#Basic Matrix Operations}{Basic Matrix Operations} |
|
1935 |
*/ |
|
1936 |
void QTransform::map(qreal x, qreal y, qreal *tx, qreal *ty) const |
|
1937 |
{ |
|
1938 |
TransformationType t = inline_type(); |
|
1939 |
MAP(x, y, *tx, *ty); |
|
1940 |
} |
|
1941 |
||
1942 |
/*! |
|
1943 |
\overload |
|
1944 |
||
1945 |
Maps the given coordinates \a x and \a y into the coordinate |
|
1946 |
system defined by this matrix. The resulting values are put in *\a |
|
1947 |
tx and *\a ty, respectively. Note that the transformed coordinates |
|
1948 |
are rounded to the nearest integer. |
|
1949 |
*/ |
|
1950 |
void QTransform::map(int x, int y, int *tx, int *ty) const |
|
1951 |
{ |
|
1952 |
TransformationType t = inline_type(); |
|
1953 |
qreal fx = 0, fy = 0; |
|
1954 |
MAP(x, y, fx, fy); |
|
1955 |
*tx = qRound(fx); |
|
1956 |
*ty = qRound(fy); |
|
1957 |
} |
|
1958 |
||
1959 |
/*! |
|
1960 |
Returns the QTransform as an affine matrix. |
|
1961 |
||
1962 |
\warning If a perspective transformation has been specified, |
|
1963 |
then the conversion will cause loss of data. |
|
1964 |
*/ |
|
1965 |
const QMatrix &QTransform::toAffine() const |
|
1966 |
{ |
|
1967 |
return affine; |
|
1968 |
} |
|
1969 |
||
1970 |
/*! |
|
1971 |
Returns the transformation type of this matrix. |
|
1972 |
||
1973 |
The transformation type is the highest enumeration value |
|
1974 |
capturing all of the matrix's transformations. For example, |
|
1975 |
if the matrix both scales and shears, the type would be \c TxShear, |
|
1976 |
because \c TxShear has a higher enumeration value than \c TxScale. |
|
1977 |
||
1978 |
Knowing the transformation type of a matrix is useful for optimization: |
|
1979 |
you can often handle specific types more optimally than handling |
|
1980 |
the generic case. |
|
1981 |
*/ |
|
1982 |
QTransform::TransformationType QTransform::type() const |
|
1983 |
{ |
|
1984 |
if(m_dirty == TxNone || m_dirty < m_type) |
|
1985 |
return static_cast<TransformationType>(m_type); |
|
1986 |
||
1987 |
switch (static_cast<TransformationType>(m_dirty)) { |
|
1988 |
case TxProject: |
|
1989 |
if (!qFuzzyIsNull(m_13) || !qFuzzyIsNull(m_23) || !qFuzzyIsNull(m_33 - 1)) { |
|
1990 |
m_type = TxProject; |
|
1991 |
break; |
|
1992 |
} |
|
1993 |
case TxShear: |
|
1994 |
case TxRotate: |
|
1995 |
if (!qFuzzyIsNull(affine._m12) || !qFuzzyIsNull(affine._m21)) { |
|
1996 |
const qreal dot = affine._m11 * affine._m12 + affine._m21 * affine._m22; |
|
1997 |
if (qFuzzyIsNull(dot)) |
|
1998 |
m_type = TxRotate; |
|
1999 |
else |
|
2000 |
m_type = TxShear; |
|
2001 |
break; |
|
2002 |
} |
|
2003 |
case TxScale: |
|
2004 |
if (!qFuzzyIsNull(affine._m11 - 1) || !qFuzzyIsNull(affine._m22 - 1)) { |
|
2005 |
m_type = TxScale; |
|
2006 |
break; |
|
2007 |
} |
|
2008 |
case TxTranslate: |
|
2009 |
if (!qFuzzyIsNull(affine._dx) || !qFuzzyIsNull(affine._dy)) { |
|
2010 |
m_type = TxTranslate; |
|
2011 |
break; |
|
2012 |
} |
|
2013 |
case TxNone: |
|
2014 |
m_type = TxNone; |
|
2015 |
break; |
|
2016 |
} |
|
2017 |
||
2018 |
m_dirty = TxNone; |
|
2019 |
return static_cast<TransformationType>(m_type); |
|
2020 |
} |
|
2021 |
||
2022 |
/*! |
|
2023 |
||
2024 |
Returns the transform as a QVariant. |
|
2025 |
*/ |
|
2026 |
QTransform::operator QVariant() const |
|
2027 |
{ |
|
2028 |
return QVariant(QVariant::Transform, this); |
|
2029 |
} |
|
2030 |
||
2031 |
||
2032 |
/*! |
|
2033 |
\fn bool QTransform::isInvertible() const |
|
2034 |
||
2035 |
Returns true if the matrix is invertible, otherwise returns false. |
|
2036 |
||
2037 |
\sa inverted() |
|
2038 |
*/ |
|
2039 |
||
2040 |
/*! |
|
2041 |
\fn qreal QTransform::det() const |
|
2042 |
\obsolete |
|
2043 |
||
2044 |
Returns the matrix's determinant. Use determinant() instead. |
|
2045 |
*/ |
|
2046 |
||
2047 |
||
2048 |
/*! |
|
2049 |
\fn qreal QTransform::m11() const |
|
2050 |
||
2051 |
Returns the horizontal scaling factor. |
|
2052 |
||
2053 |
\sa scale(), {QTransform#Basic Matrix Operations}{Basic Matrix |
|
2054 |
Operations} |
|
2055 |
*/ |
|
2056 |
||
2057 |
/*! |
|
2058 |
\fn qreal QTransform::m12() const |
|
2059 |
||
2060 |
Returns the vertical shearing factor. |
|
2061 |
||
2062 |
\sa shear(), {QTransform#Basic Matrix Operations}{Basic Matrix |
|
2063 |
Operations} |
|
2064 |
*/ |
|
2065 |
||
2066 |
/*! |
|
2067 |
\fn qreal QTransform::m21() const |
|
2068 |
||
2069 |
Returns the horizontal shearing factor. |
|
2070 |
||
2071 |
\sa shear(), {QTransform#Basic Matrix Operations}{Basic Matrix |
|
2072 |
Operations} |
|
2073 |
*/ |
|
2074 |
||
2075 |
/*! |
|
2076 |
\fn qreal QTransform::m22() const |
|
2077 |
||
2078 |
Returns the vertical scaling factor. |
|
2079 |
||
2080 |
\sa scale(), {QTransform#Basic Matrix Operations}{Basic Matrix |
|
2081 |
Operations} |
|
2082 |
*/ |
|
2083 |
||
2084 |
/*! |
|
2085 |
\fn qreal QTransform::dx() const |
|
2086 |
||
2087 |
Returns the horizontal translation factor. |
|
2088 |
||
2089 |
\sa m31(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
|
2090 |
Operations} |
|
2091 |
*/ |
|
2092 |
||
2093 |
/*! |
|
2094 |
\fn qreal QTransform::dy() const |
|
2095 |
||
2096 |
Returns the vertical translation factor. |
|
2097 |
||
2098 |
\sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
|
2099 |
Operations} |
|
2100 |
*/ |
|
2101 |
||
2102 |
||
2103 |
/*! |
|
2104 |
\fn qreal QTransform::m13() const |
|
2105 |
||
2106 |
Returns the horizontal projection factor. |
|
2107 |
||
2108 |
\sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
|
2109 |
Operations} |
|
2110 |
*/ |
|
2111 |
||
2112 |
||
2113 |
/*! |
|
2114 |
\fn qreal QTransform::m23() const |
|
2115 |
||
2116 |
Returns the vertical projection factor. |
|
2117 |
||
2118 |
\sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
|
2119 |
Operations} |
|
2120 |
*/ |
|
2121 |
||
2122 |
/*! |
|
2123 |
\fn qreal QTransform::m31() const |
|
2124 |
||
2125 |
Returns the horizontal translation factor. |
|
2126 |
||
2127 |
\sa dx(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
|
2128 |
Operations} |
|
2129 |
*/ |
|
2130 |
||
2131 |
/*! |
|
2132 |
\fn qreal QTransform::m32() const |
|
2133 |
||
2134 |
Returns the vertical translation factor. |
|
2135 |
||
2136 |
\sa dy(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
|
2137 |
Operations} |
|
2138 |
*/ |
|
2139 |
||
2140 |
/*! |
|
2141 |
\fn qreal QTransform::m33() const |
|
2142 |
||
2143 |
Returns the division factor. |
|
2144 |
||
2145 |
\sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
|
2146 |
Operations} |
|
2147 |
*/ |
|
2148 |
||
2149 |
/*! |
|
2150 |
\fn qreal QTransform::determinant() const |
|
2151 |
||
2152 |
Returns the matrix's determinant. |
|
2153 |
*/ |
|
2154 |
||
2155 |
/*! |
|
2156 |
\fn bool QTransform::isIdentity() const |
|
2157 |
||
2158 |
Returns true if the matrix is the identity matrix, otherwise |
|
2159 |
returns false. |
|
2160 |
||
2161 |
\sa reset() |
|
2162 |
*/ |
|
2163 |
||
2164 |
/*! |
|
2165 |
\fn bool QTransform::isAffine() const |
|
2166 |
||
2167 |
Returns true if the matrix represent an affine transformation, |
|
2168 |
otherwise returns false. |
|
2169 |
*/ |
|
2170 |
||
2171 |
/*! |
|
2172 |
\fn bool QTransform::isScaling() const |
|
2173 |
||
2174 |
Returns true if the matrix represents a scaling |
|
2175 |
transformation, otherwise returns false. |
|
2176 |
||
2177 |
\sa reset() |
|
2178 |
*/ |
|
2179 |
||
2180 |
/*! |
|
2181 |
\fn bool QTransform::isRotating() const |
|
2182 |
||
2183 |
Returns true if the matrix represents some kind of a |
|
2184 |
rotating transformation, otherwise returns false. |
|
2185 |
||
2186 |
\sa reset() |
|
2187 |
*/ |
|
2188 |
||
2189 |
/*! |
|
2190 |
\fn bool QTransform::isTranslating() const |
|
2191 |
||
2192 |
Returns true if the matrix represents a translating |
|
2193 |
transformation, otherwise returns false. |
|
2194 |
||
2195 |
\sa reset() |
|
2196 |
*/ |
|
2197 |
||
2198 |
/*! |
|
2199 |
\fn bool qFuzzyCompare(const QTransform& t1, const QTransform& t2) |
|
2200 |
||
2201 |
\relates QTransform |
|
2202 |
\since 4.6 |
|
2203 |
||
2204 |
Returns true if \a t1 and \a t2 are equal, allowing for a small |
|
2205 |
fuzziness factor for floating-point comparisons; false otherwise. |
|
2206 |
*/ |
|
2207 |
||
2208 |
||
2209 |
// returns true if the transform is uniformly scaling |
|
2210 |
// (same scale in x and y direction) |
|
2211 |
// scale is set to the max of x and y scaling factors |
|
2212 |
Q_GUI_EXPORT |
|
2213 |
bool qt_scaleForTransform(const QTransform &transform, qreal *scale) |
|
2214 |
{ |
|
2215 |
const QTransform::TransformationType type = transform.type(); |
|
2216 |
if (type <= QTransform::TxTranslate) { |
|
3
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
2217 |
if (scale) |
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
2218 |
*scale = 1; |
0 | 2219 |
return true; |
2220 |
} else if (type == QTransform::TxScale) { |
|
2221 |
const qreal xScale = qAbs(transform.m11()); |
|
2222 |
const qreal yScale = qAbs(transform.m22()); |
|
3
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
2223 |
if (scale) |
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
2224 |
*scale = qMax(xScale, yScale); |
0 | 2225 |
return qFuzzyCompare(xScale, yScale); |
2226 |
} |
|
2227 |
||
2228 |
const qreal xScale = transform.m11() * transform.m11() |
|
2229 |
+ transform.m21() * transform.m21(); |
|
2230 |
const qreal yScale = transform.m12() * transform.m12() |
|
2231 |
+ transform.m22() * transform.m22(); |
|
3
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
2232 |
if (scale) |
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
2233 |
*scale = qSqrt(qMax(xScale, yScale)); |
0 | 2234 |
return type == QTransform::TxRotate && qFuzzyCompare(xScale, yScale); |
2235 |
} |
|
2236 |
||
2237 |
QT_END_NAMESPACE |