src/gui/painting/qtransform.cpp
changeset 0 1918ee327afb
child 3 41300fa6a67c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/gui/painting/qtransform.cpp	Mon Jan 11 14:00:40 2010 +0000
@@ -0,0 +1,2234 @@
+/****************************************************************************
+**
+** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
+** All rights reserved.
+** Contact: Nokia Corporation (qt-info@nokia.com)
+**
+** This file is part of the QtGui module of the Qt Toolkit.
+**
+** $QT_BEGIN_LICENSE:LGPL$
+** No Commercial Usage
+** This file contains pre-release code and may not be distributed.
+** You may use this file in accordance with the terms and conditions
+** contained in the Technology Preview License Agreement accompanying
+** this package.
+**
+** GNU Lesser General Public License Usage
+** Alternatively, this file may be used under the terms of the GNU Lesser
+** General Public License version 2.1 as published by the Free Software
+** Foundation and appearing in the file LICENSE.LGPL included in the
+** packaging of this file.  Please review the following information to
+** ensure the GNU Lesser General Public License version 2.1 requirements
+** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
+**
+** In addition, as a special exception, Nokia gives you certain additional
+** rights.  These rights are described in the Nokia Qt LGPL Exception
+** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
+**
+** If you have questions regarding the use of this file, please contact
+** Nokia at qt-info@nokia.com.
+**
+**
+**
+**
+**
+**
+**
+**
+** $QT_END_LICENSE$
+**
+****************************************************************************/
+#include "qtransform.h"
+
+#include "qdatastream.h"
+#include "qdebug.h"
+#include "qmatrix.h"
+#include "qregion.h"
+#include "qpainterpath.h"
+#include "qvariant.h"
+#include <qmath.h>
+
+#include <private/qbezier_p.h>
+
+QT_BEGIN_NAMESPACE
+
+#define Q_NEAR_CLIP (sizeof(qreal) == sizeof(double) ? 0.000001 : 0.0001)
+
+#ifdef MAP
+#  undef MAP
+#endif
+#define MAP(x, y, nx, ny) \
+    do { \
+        qreal FX_ = x; \
+        qreal FY_ = y; \
+        switch(t) {   \
+        case TxNone:  \
+            nx = FX_;   \
+            ny = FY_;   \
+            break;    \
+        case TxTranslate:    \
+            nx = FX_ + affine._dx;                \
+            ny = FY_ + affine._dy;                \
+            break;                              \
+        case TxScale:                           \
+            nx = affine._m11 * FX_ + affine._dx;  \
+            ny = affine._m22 * FY_ + affine._dy;  \
+            break;                              \
+        case TxRotate:                          \
+        case TxShear:                           \
+        case TxProject:                                      \
+            nx = affine._m11 * FX_ + affine._m21 * FY_ + affine._dx;        \
+            ny = affine._m12 * FX_ + affine._m22 * FY_ + affine._dy;        \
+            if (t == TxProject) {                                       \
+                qreal w = (m_13 * FX_ + m_23 * FY_ + m_33);              \
+                if (w < qreal(Q_NEAR_CLIP)) w = qreal(Q_NEAR_CLIP);     \
+                w = 1./w;                                               \
+                nx *= w;                                                \
+                ny *= w;                                                \
+            }                                                           \
+        }                                                               \
+    } while (0)
+
+/*!
+    \class QTransform
+    \brief The QTransform class specifies 2D transformations of a coordinate system.
+    \since 4.3
+    \ingroup painting
+
+    A transformation specifies how to translate, scale, shear, rotate
+    or project the coordinate system, and is typically used when
+    rendering graphics.
+
+    QTransform differs from QMatrix in that it is a true 3x3 matrix,
+    allowing perspective transformations. QTransform's toAffine()
+    method allows casting QTransform to QMatrix. If a perspective
+    transformation has been specified on the matrix, then the
+    conversion will cause loss of data.
+
+    QTransform is the recommended transformation class in Qt.
+
+    A QTransform object can be built using the setMatrix(), scale(),
+    rotate(), translate() and shear() functions.  Alternatively, it
+    can be built by applying \l {QTransform#Basic Matrix
+    Operations}{basic matrix operations}. The matrix can also be
+    defined when constructed, and it can be reset to the identity
+    matrix (the default) using the reset() function.
+
+    The QTransform class supports mapping of graphic primitives: A given
+    point, line, polygon, region, or painter path can be mapped to the
+    coordinate system defined by \e this matrix using the map()
+    function. In case of a rectangle, its coordinates can be
+    transformed using the mapRect() function. A rectangle can also be
+    transformed into a \e polygon (mapped to the coordinate system
+    defined by \e this matrix), using the mapToPolygon() function.
+
+    QTransform provides the isIdentity() function which returns true if
+    the matrix is the identity matrix, and the isInvertible() function
+    which returns true if the matrix is non-singular (i.e. AB = BA =
+    I). The inverted() function returns an inverted copy of \e this
+    matrix if it is invertible (otherwise it returns the identity
+    matrix), and adjoint() returns the matrix's classical adjoint.
+    In addition, QTransform provides the determinant() function which
+    returns the matrix's determinant.
+
+    Finally, the QTransform class supports matrix multiplication, addition
+    and subtraction, and objects of the class can be streamed as well
+    as compared.
+
+    \tableofcontents
+
+    \section1 Rendering Graphics
+
+    When rendering graphics, the matrix defines the transformations
+    but the actual transformation is performed by the drawing routines
+    in QPainter.
+
+    By default, QPainter operates on the associated device's own
+    coordinate system.  The standard coordinate system of a
+    QPaintDevice has its origin located at the top-left position. The
+    \e x values increase to the right; \e y values increase
+    downward. For a complete description, see the \l {The Coordinate
+    System}{coordinate system} documentation.
+
+    QPainter has functions to translate, scale, shear and rotate the
+    coordinate system without using a QTransform. For example:
+
+    \table 100%
+    \row
+    \o \inlineimage qtransform-simpletransformation.png
+    \o
+    \snippet doc/src/snippets/transform/main.cpp 0
+    \endtable
+
+    Although these functions are very convenient, it can be more
+    efficient to build a QTransform and call QPainter::setTransform() if you
+    want to perform more than a single transform operation. For
+    example:
+
+    \table 100%
+    \row
+    \o \inlineimage qtransform-combinedtransformation.png
+    \o
+    \snippet doc/src/snippets/transform/main.cpp 1
+    \endtable
+
+    \section1 Basic Matrix Operations
+
+    \image qtransform-representation.png
+
+    A QTransform object contains a 3 x 3 matrix.  The \c m31 (\c dx) and
+    \c m32 (\c dy) elements specify horizontal and vertical translation.
+    The \c m11 and \c m22 elements specify horizontal and vertical scaling.
+    The \c m21 and \c m12 elements specify horizontal and vertical \e shearing.
+    And finally, the \c m13 and \c m23 elements specify horizontal and vertical
+    projection, with \c m33 as an additional projection factor.
+
+    QTransform transforms a point in the plane to another point using the
+    following formulas:
+
+    \snippet doc/src/snippets/code/src_gui_painting_qtransform.cpp 0
+
+    The point \e (x, y) is the original point, and \e (x', y') is the
+    transformed point. \e (x', y') can be transformed back to \e (x,
+    y) by performing the same operation on the inverted() matrix.
+
+    The various matrix elements can be set when constructing the
+    matrix, or by using the setMatrix() function later on. They can also
+    be manipulated using the translate(), rotate(), scale() and
+    shear() convenience functions. The currently set values can be
+    retrieved using the m11(), m12(), m13(), m21(), m22(), m23(),
+    m31(), m32(), m33(), dx() and dy() functions.
+
+    Translation is the simplest transformation. Setting \c dx and \c
+    dy will move the coordinate system \c dx units along the X axis
+    and \c dy units along the Y axis.  Scaling can be done by setting
+    \c m11 and \c m22. For example, setting \c m11 to 2 and \c m22 to
+    1.5 will double the height and increase the width by 50%.  The
+    identity matrix has \c m11, \c m22, and \c m33 set to 1 (all others are set
+    to 0) mapping a point to itself. Shearing is controlled by \c m12
+    and \c m21. Setting these elements to values different from zero
+    will twist the coordinate system. Rotation is achieved by
+    setting both the shearing factors and the scaling factors. Perspective
+    transformation is achieved by setting both the projection factors and
+    the scaling factors.
+
+    Here's the combined transformations example using basic matrix
+    operations:
+
+    \table 100%
+    \row
+    \o \inlineimage qtransform-combinedtransformation2.png
+    \o
+    \snippet doc/src/snippets/transform/main.cpp 2
+    \endtable
+
+    \sa QPainter, {The Coordinate System}, {demos/affine}{Affine
+    Transformations Demo}, {Transformations Example}
+*/
+
+/*!
+    \enum QTransform::TransformationType
+
+    \value TxNone
+    \value TxTranslate
+    \value TxScale
+    \value TxRotate
+    \value TxShear
+    \value TxProject
+*/
+
+/*!
+    \fn QTransform::QTransform(Qt::Initialization)
+    \internal
+*/
+
+/*!
+    Constructs an identity matrix.
+
+    All elements are set to zero except \c m11 and \c m22 (specifying
+    the scale) and \c m13 which are set to 1.
+
+    \sa reset()
+*/
+QTransform::QTransform()
+    : affine(true)
+    , m_13(0), m_23(0), m_33(1)
+    , m_type(TxNone)
+    , m_dirty(TxNone)
+{
+}
+
+/*!
+    \fn QTransform::QTransform(qreal m11, qreal m12, qreal m13, qreal m21, qreal m22, qreal m23, qreal m31, qreal m32, qreal m33)
+
+    Constructs a matrix with the elements, \a m11, \a m12, \a m13,
+    \a m21, \a m22, \a m23, \a m31, \a m32, \a m33.
+
+    \sa setMatrix()
+*/
+QTransform::QTransform(qreal h11, qreal h12, qreal h13,
+                       qreal h21, qreal h22, qreal h23,
+                       qreal h31, qreal h32, qreal h33)
+    : affine(h11, h12, h21, h22, h31, h32, true)
+    , m_13(h13), m_23(h23), m_33(h33)
+    , m_type(TxNone)
+    , m_dirty(TxProject)
+{
+}
+
+/*!
+    \fn QTransform::QTransform(qreal m11, qreal m12, qreal m21, qreal m22, qreal dx, qreal dy)
+
+    Constructs a matrix with the elements, \a m11, \a m12, \a m21, \a m22, \a dx and \a dy.
+
+    \sa setMatrix()
+*/
+QTransform::QTransform(qreal h11, qreal h12, qreal h21,
+                       qreal h22, qreal dx, qreal dy)
+    : affine(h11, h12, h21, h22, dx, dy, true)
+    , m_13(0), m_23(0), m_33(1)
+    , m_type(TxNone)
+    , m_dirty(TxShear)
+{
+}
+
+/*!
+    \fn QTransform::QTransform(const QMatrix &matrix)
+
+    Constructs a matrix that is a copy of the given \a matrix.
+    Note that the \c m13, \c m23, and \c m33 elements are set to 0, 0,
+    and 1 respectively.
+ */
+QTransform::QTransform(const QMatrix &mtx)
+    : affine(mtx._m11, mtx._m12, mtx._m21, mtx._m22, mtx._dx, mtx._dy, true),
+      m_13(0), m_23(0), m_33(1)
+    , m_type(TxNone)
+    , m_dirty(TxShear)
+{
+}
+
+/*!
+    Returns the adjoint of this matrix.
+*/
+QTransform QTransform::adjoint() const
+{
+    qreal h11, h12, h13,
+        h21, h22, h23,
+        h31, h32, h33;
+    h11 = affine._m22*m_33 - m_23*affine._dy;
+    h21 = m_23*affine._dx - affine._m21*m_33;
+    h31 = affine._m21*affine._dy - affine._m22*affine._dx;
+    h12 = m_13*affine._dy - affine._m12*m_33;
+    h22 = affine._m11*m_33 - m_13*affine._dx;
+    h32 = affine._m12*affine._dx - affine._m11*affine._dy;
+    h13 = affine._m12*m_23 - m_13*affine._m22;
+    h23 = m_13*affine._m21 - affine._m11*m_23;
+    h33 = affine._m11*affine._m22 - affine._m12*affine._m21;
+
+    return QTransform(h11, h12, h13,
+                      h21, h22, h23,
+                      h31, h32, h33, true);
+}
+
+/*!
+    Returns the transpose of this matrix.
+*/
+QTransform QTransform::transposed() const
+{
+    QTransform t(affine._m11, affine._m21, affine._dx,
+                 affine._m12, affine._m22, affine._dy,
+                 m_13, m_23, m_33, true);
+    t.m_type = m_type;
+    t.m_dirty = m_dirty;
+    return t;
+}
+
+/*!
+    Returns an inverted copy of this matrix.
+
+    If the matrix is singular (not invertible), the returned matrix is
+    the identity matrix. If \a invertible is valid (i.e. not 0), its
+    value is set to true if the matrix is invertible, otherwise it is
+    set to false.
+
+    \sa isInvertible()
+*/
+QTransform QTransform::inverted(bool *invertible) const
+{
+    QTransform invert(true);
+    bool inv = true;
+
+    switch(inline_type()) {
+    case TxNone:
+        break;
+    case TxTranslate:
+        invert.affine._dx = -affine._dx;
+        invert.affine._dy = -affine._dy;
+        break;
+    case TxScale:
+        inv = !qFuzzyIsNull(affine._m11);
+        inv &= !qFuzzyIsNull(affine._m22);
+        if (inv) {
+            invert.affine._m11 = 1. / affine._m11;
+            invert.affine._m22 = 1. / affine._m22;
+            invert.affine._dx = -affine._dx * invert.affine._m11;
+            invert.affine._dy = -affine._dy * invert.affine._m22;
+        }
+        break;
+    case TxRotate:
+    case TxShear:
+        invert.affine = affine.inverted(&inv);
+        break;
+    default:
+        // general case
+        qreal det = determinant();
+        inv = !qFuzzyIsNull(det);
+        if (inv)
+            invert = adjoint() / det;
+        break;
+    }
+
+    if (invertible)
+        *invertible = inv;
+
+    if (inv) {
+        // inverting doesn't change the type
+        invert.m_type = m_type;
+        invert.m_dirty = m_dirty;
+    }
+
+    return invert;
+}
+
+/*!
+    Moves the coordinate system \a dx along the x axis and \a dy along
+    the y axis, and returns a reference to the matrix.
+
+    \sa setMatrix()
+*/
+QTransform &QTransform::translate(qreal dx, qreal dy)
+{
+    if (dx == 0 && dy == 0)
+        return *this;
+
+    switch(inline_type()) {
+    case TxNone:
+        affine._dx = dx;
+        affine._dy = dy;
+        break;
+    case TxTranslate:
+        affine._dx += dx;
+        affine._dy += dy;
+        break;
+    case TxScale:
+        affine._dx += dx*affine._m11;
+        affine._dy += dy*affine._m22;
+        break;
+    case TxProject:
+        m_33 += dx*m_13 + dy*m_23;
+        // Fall through
+    case TxShear:
+    case TxRotate:
+        affine._dx += dx*affine._m11 + dy*affine._m21;
+        affine._dy += dy*affine._m22 + dx*affine._m12;
+        break;
+    }
+    if (m_dirty < TxTranslate)
+        m_dirty = TxTranslate;
+    return *this;
+}
+
+/*!
+    Creates a matrix which corresponds to a translation of \a dx along
+    the x axis and \a dy along the y axis. This is the same as
+    QTransform().translate(dx, dy) but slightly faster.
+
+    \since 4.5
+*/
+QTransform QTransform::fromTranslate(qreal dx, qreal dy)
+{
+    QTransform transform(1, 0, 0, 0, 1, 0, dx, dy, 1, true);
+    if (dx == 0 && dy == 0)
+        transform.m_type = TxNone;
+    else
+        transform.m_type = TxTranslate;
+    transform.m_dirty = TxNone;
+    return transform;
+}
+
+/*!
+    Scales the coordinate system by \a sx horizontally and \a sy
+    vertically, and returns a reference to the matrix.
+
+    \sa setMatrix()
+*/
+QTransform & QTransform::scale(qreal sx, qreal sy)
+{
+    if (sx == 1 && sy == 1)
+        return *this;
+
+    switch(inline_type()) {
+    case TxNone:
+    case TxTranslate:
+        affine._m11 = sx;
+        affine._m22 = sy;
+        break;
+    case TxProject:
+        m_13 *= sx;
+        m_23 *= sy;
+        // fall through
+    case TxRotate:
+    case TxShear:
+        affine._m12 *= sx;
+        affine._m21 *= sy;
+        // fall through
+    case TxScale:
+        affine._m11 *= sx;
+        affine._m22 *= sy;
+        break;
+    }
+    if (m_dirty < TxScale)
+        m_dirty = TxScale;
+    return *this;
+}
+
+/*!
+    Creates a matrix which corresponds to a scaling of
+    \a sx horizontally and \a sy vertically.
+    This is the same as QTransform().scale(sx, sy) but slightly faster.
+
+    \since 4.5
+*/
+QTransform QTransform::fromScale(qreal sx, qreal sy)
+{
+    QTransform transform(sx, 0, 0, 0, sy, 0, 0, 0, 1, true);
+    if (sx == 1. && sy == 1.)
+        transform.m_type = TxNone;
+    else
+        transform.m_type = TxScale;
+    transform.m_dirty = TxNone;
+    return transform;
+}
+
+/*!
+    Shears the coordinate system by \a sh horizontally and \a sv
+    vertically, and returns a reference to the matrix.
+
+    \sa setMatrix()
+*/
+QTransform & QTransform::shear(qreal sh, qreal sv)
+{
+    if (sh == 0 && sv == 0)
+        return *this;
+
+    switch(inline_type()) {
+    case TxNone:
+    case TxTranslate:
+        affine._m12 = sv;
+        affine._m21 = sh;
+        break;
+    case TxScale:
+        affine._m12 = sv*affine._m22;
+        affine._m21 = sh*affine._m11;
+        break;
+    case TxProject: {
+        qreal tm13 = sv*m_23;
+        qreal tm23 = sh*m_13;
+        m_13 += tm13;
+        m_23 += tm23;
+    }
+        // fall through
+    case TxRotate:
+    case TxShear: {
+        qreal tm11 = sv*affine._m21;
+        qreal tm22 = sh*affine._m12;
+        qreal tm12 = sv*affine._m22;
+        qreal tm21 = sh*affine._m11;
+        affine._m11 += tm11; affine._m12 += tm12;
+        affine._m21 += tm21; affine._m22 += tm22;
+        break;
+    }
+    }
+    if (m_dirty < TxShear)
+        m_dirty = TxShear;
+    return *this;
+}
+
+const qreal deg2rad = qreal(0.017453292519943295769);        // pi/180
+const qreal inv_dist_to_plane = 1. / 1024.;
+
+/*!
+    \fn QTransform &QTransform::rotate(qreal angle, Qt::Axis axis)
+
+    Rotates the coordinate system counterclockwise by the given \a angle
+    about the specified \a axis and returns a reference to the matrix.
+
+    Note that if you apply a QTransform to a point defined in widget
+    coordinates, the direction of the rotation will be clockwise
+    because the y-axis points downwards.
+
+    The angle is specified in degrees.
+
+    \sa setMatrix()
+*/
+QTransform & QTransform::rotate(qreal a, Qt::Axis axis)
+{
+    if (a == 0)
+        return *this;
+
+    qreal sina = 0;
+    qreal cosa = 0;
+    if (a == 90. || a == -270.)
+        sina = 1.;
+    else if (a == 270. || a == -90.)
+        sina = -1.;
+    else if (a == 180.)
+        cosa = -1.;
+    else{
+        qreal b = deg2rad*a;          // convert to radians
+        sina = qSin(b);               // fast and convenient
+        cosa = qCos(b);
+    }
+
+    if (axis == Qt::ZAxis) {
+        switch(inline_type()) {
+        case TxNone:
+        case TxTranslate:
+            affine._m11 = cosa;
+            affine._m12 = sina;
+            affine._m21 = -sina;
+            affine._m22 = cosa;
+            break;
+        case TxScale: {
+            qreal tm11 = cosa*affine._m11;
+            qreal tm12 = sina*affine._m22;
+            qreal tm21 = -sina*affine._m11;
+            qreal tm22 = cosa*affine._m22;
+            affine._m11 = tm11; affine._m12 = tm12;
+            affine._m21 = tm21; affine._m22 = tm22;
+            break;
+        }
+        case TxProject: {
+            qreal tm13 = cosa*m_13 + sina*m_23;
+            qreal tm23 = -sina*m_13 + cosa*m_23;
+            m_13 = tm13;
+            m_23 = tm23;
+            // fall through
+        }
+        case TxRotate:
+        case TxShear: {
+            qreal tm11 = cosa*affine._m11 + sina*affine._m21;
+            qreal tm12 = cosa*affine._m12 + sina*affine._m22;
+            qreal tm21 = -sina*affine._m11 + cosa*affine._m21;
+            qreal tm22 = -sina*affine._m12 + cosa*affine._m22;
+            affine._m11 = tm11; affine._m12 = tm12;
+            affine._m21 = tm21; affine._m22 = tm22;
+            break;
+        }
+        }
+        if (m_dirty < TxRotate)
+            m_dirty = TxRotate;
+    } else {
+        QTransform result;
+        if (axis == Qt::YAxis) {
+            result.affine._m11 = cosa;
+            result.m_13 = -sina * inv_dist_to_plane;
+        } else {
+            result.affine._m22 = cosa;
+            result.m_23 = -sina * inv_dist_to_plane;
+        }
+        result.m_type = TxProject;
+        *this = result * *this;
+    }
+
+    return *this;
+}
+
+/*!
+    \fn QTransform & QTransform::rotateRadians(qreal angle, Qt::Axis axis)
+
+    Rotates the coordinate system counterclockwise by the given \a angle
+    about the specified \a axis and returns a reference to the matrix.
+
+    Note that if you apply a QTransform to a point defined in widget
+    coordinates, the direction of the rotation will be clockwise
+    because the y-axis points downwards.
+
+    The angle is specified in radians.
+
+    \sa setMatrix()
+*/
+QTransform & QTransform::rotateRadians(qreal a, Qt::Axis axis)
+{
+    qreal sina = qSin(a);
+    qreal cosa = qCos(a);
+
+    if (axis == Qt::ZAxis) {
+        switch(inline_type()) {
+        case TxNone:
+        case TxTranslate:
+            affine._m11 = cosa;
+            affine._m12 = sina;
+            affine._m21 = -sina;
+            affine._m22 = cosa;
+            break;
+        case TxScale: {
+            qreal tm11 = cosa*affine._m11;
+            qreal tm12 = sina*affine._m22;
+            qreal tm21 = -sina*affine._m11;
+            qreal tm22 = cosa*affine._m22;
+            affine._m11 = tm11; affine._m12 = tm12;
+            affine._m21 = tm21; affine._m22 = tm22;
+            break;
+        }
+        case TxProject: {
+            qreal tm13 = cosa*m_13 + sina*m_23;
+            qreal tm23 = -sina*m_13 + cosa*m_23;
+            m_13 = tm13;
+            m_23 = tm23;
+            // fall through
+        }
+        case TxRotate:
+        case TxShear: {
+            qreal tm11 = cosa*affine._m11 + sina*affine._m21;
+            qreal tm12 = cosa*affine._m12 + sina*affine._m22;
+            qreal tm21 = -sina*affine._m11 + cosa*affine._m21;
+            qreal tm22 = -sina*affine._m12 + cosa*affine._m22;
+            affine._m11 = tm11; affine._m12 = tm12;
+            affine._m21 = tm21; affine._m22 = tm22;
+            break;
+        }
+        }
+        if (m_dirty < TxRotate)
+            m_dirty = TxRotate;
+    } else {
+        QTransform result;
+        if (axis == Qt::YAxis) {
+            result.affine._m11 = cosa;
+            result.m_13 = -sina * inv_dist_to_plane;
+        } else {
+            result.affine._m22 = cosa;
+            result.m_23 = -sina * inv_dist_to_plane;
+        }
+        result.m_type = TxProject;
+        *this = result * *this;
+    }
+    return *this;
+}
+
+/*!
+    \fn bool QTransform::operator==(const QTransform &matrix) const
+    Returns true if this matrix is equal to the given \a matrix,
+    otherwise returns false.
+*/
+bool QTransform::operator==(const QTransform &o) const
+{
+    return affine._m11 == o.affine._m11 &&
+           affine._m12 == o.affine._m12 &&
+           affine._m21 == o.affine._m21 &&
+           affine._m22 == o.affine._m22 &&
+           affine._dx == o.affine._dx &&
+           affine._dy == o.affine._dy &&
+           m_13 == o.m_13 &&
+           m_23 == o.m_23 &&
+           m_33 == o.m_33;
+}
+
+/*!
+    \fn bool QTransform::operator!=(const QTransform &matrix) const
+    Returns true if this matrix is not equal to the given \a matrix,
+    otherwise returns false.
+*/
+bool QTransform::operator!=(const QTransform &o) const
+{
+    return !operator==(o);
+}
+
+/*!
+    \fn QTransform & QTransform::operator*=(const QTransform &matrix)
+    \overload
+
+    Returns the result of multiplying this matrix by the given \a
+    matrix.
+*/
+QTransform & QTransform::operator*=(const QTransform &o)
+{
+    const TransformationType otherType = o.inline_type();
+    if (otherType == TxNone)
+        return *this;
+
+    const TransformationType thisType = inline_type();
+    if (thisType == TxNone)
+        return operator=(o);
+
+    TransformationType t = qMax(thisType, otherType);
+    switch(t) {
+    case TxNone:
+        break;
+    case TxTranslate:
+        affine._dx += o.affine._dx;
+        affine._dy += o.affine._dy;
+        break;
+    case TxScale:
+    {
+        qreal m11 = affine._m11*o.affine._m11;
+        qreal m22 = affine._m22*o.affine._m22;
+
+        qreal m31 = affine._dx*o.affine._m11 + o.affine._dx;
+        qreal m32 = affine._dy*o.affine._m22 + o.affine._dy;
+
+        affine._m11 = m11;
+        affine._m22 = m22;
+        affine._dx = m31; affine._dy = m32;
+        break;
+    }
+    case TxRotate:
+    case TxShear:
+    {
+        qreal m11 = affine._m11*o.affine._m11 + affine._m12*o.affine._m21;
+        qreal m12 = affine._m11*o.affine._m12 + affine._m12*o.affine._m22;
+
+        qreal m21 = affine._m21*o.affine._m11 + affine._m22*o.affine._m21;
+        qreal m22 = affine._m21*o.affine._m12 + affine._m22*o.affine._m22;
+
+        qreal m31 = affine._dx*o.affine._m11 + affine._dy*o.affine._m21 + o.affine._dx;
+        qreal m32 = affine._dx*o.affine._m12 + affine._dy*o.affine._m22 + o.affine._dy;
+
+        affine._m11 = m11; affine._m12 = m12;
+        affine._m21 = m21; affine._m22 = m22;
+        affine._dx = m31; affine._dy = m32;
+        break;
+    }
+    case TxProject:
+    {
+        qreal m11 = affine._m11*o.affine._m11 + affine._m12*o.affine._m21 + m_13*o.affine._dx;
+        qreal m12 = affine._m11*o.affine._m12 + affine._m12*o.affine._m22 + m_13*o.affine._dy;
+        qreal m13 = affine._m11*o.m_13 + affine._m12*o.m_23 + m_13*o.m_33;
+
+        qreal m21 = affine._m21*o.affine._m11 + affine._m22*o.affine._m21 + m_23*o.affine._dx;
+        qreal m22 = affine._m21*o.affine._m12 + affine._m22*o.affine._m22 + m_23*o.affine._dy;
+        qreal m23 = affine._m21*o.m_13 + affine._m22*o.m_23 + m_23*o.m_33;
+
+        qreal m31 = affine._dx*o.affine._m11 + affine._dy*o.affine._m21 + m_33*o.affine._dx;
+        qreal m32 = affine._dx*o.affine._m12 + affine._dy*o.affine._m22 + m_33*o.affine._dy;
+        qreal m33 = affine._dx*o.m_13 + affine._dy*o.m_23 + m_33*o.m_33;
+
+        affine._m11 = m11; affine._m12 = m12; m_13 = m13;
+        affine._m21 = m21; affine._m22 = m22; m_23 = m23;
+        affine._dx = m31; affine._dy = m32; m_33 = m33;
+    }
+    }
+
+    m_dirty = t;
+    m_type = t;
+
+    return *this;
+}
+
+/*!
+    \fn QTransform QTransform::operator*(const QTransform &matrix) const
+    Returns the result of multiplying this matrix by the given \a
+    matrix.
+
+    Note that matrix multiplication is not commutative, i.e. a*b !=
+    b*a.
+*/
+QTransform QTransform::operator*(const QTransform &m) const
+{
+    const TransformationType otherType = m.inline_type();
+    if (otherType == TxNone)
+        return *this;
+
+    const TransformationType thisType = inline_type();
+    if (thisType == TxNone)
+        return m;
+
+    QTransform t(true);
+    TransformationType type = qMax(thisType, otherType);
+    switch(type) {
+    case TxNone:
+        break;
+    case TxTranslate:
+        t.affine._dx = affine._dx + m.affine._dx;
+        t.affine._dy += affine._dy + m.affine._dy;
+        break;
+    case TxScale:
+    {
+        qreal m11 = affine._m11*m.affine._m11;
+        qreal m22 = affine._m22*m.affine._m22;
+
+        qreal m31 = affine._dx*m.affine._m11 + m.affine._dx;
+        qreal m32 = affine._dy*m.affine._m22 + m.affine._dy;
+
+        t.affine._m11 = m11;
+        t.affine._m22 = m22;
+        t.affine._dx = m31; t.affine._dy = m32;
+        break;
+    }
+    case TxRotate:
+    case TxShear:
+    {
+        qreal m11 = affine._m11*m.affine._m11 + affine._m12*m.affine._m21;
+        qreal m12 = affine._m11*m.affine._m12 + affine._m12*m.affine._m22;
+
+        qreal m21 = affine._m21*m.affine._m11 + affine._m22*m.affine._m21;
+        qreal m22 = affine._m21*m.affine._m12 + affine._m22*m.affine._m22;
+
+        qreal m31 = affine._dx*m.affine._m11 + affine._dy*m.affine._m21 + m.affine._dx;
+        qreal m32 = affine._dx*m.affine._m12 + affine._dy*m.affine._m22 + m.affine._dy;
+
+        t.affine._m11 = m11; t.affine._m12 = m12;
+        t.affine._m21 = m21; t.affine._m22 = m22;
+        t.affine._dx = m31; t.affine._dy = m32;
+        break;
+    }
+    case TxProject:
+    {
+        qreal m11 = affine._m11*m.affine._m11 + affine._m12*m.affine._m21 + m_13*m.affine._dx;
+        qreal m12 = affine._m11*m.affine._m12 + affine._m12*m.affine._m22 + m_13*m.affine._dy;
+        qreal m13 = affine._m11*m.m_13 + affine._m12*m.m_23 + m_13*m.m_33;
+
+        qreal m21 = affine._m21*m.affine._m11 + affine._m22*m.affine._m21 + m_23*m.affine._dx;
+        qreal m22 = affine._m21*m.affine._m12 + affine._m22*m.affine._m22 + m_23*m.affine._dy;
+        qreal m23 = affine._m21*m.m_13 + affine._m22*m.m_23 + m_23*m.m_33;
+
+        qreal m31 = affine._dx*m.affine._m11 + affine._dy*m.affine._m21 + m_33*m.affine._dx;
+        qreal m32 = affine._dx*m.affine._m12 + affine._dy*m.affine._m22 + m_33*m.affine._dy;
+        qreal m33 = affine._dx*m.m_13 + affine._dy*m.m_23 + m_33*m.m_33;
+
+        t.affine._m11 = m11; t.affine._m12 = m12; t.m_13 = m13;
+        t.affine._m21 = m21; t.affine._m22 = m22; t.m_23 = m23;
+        t.affine._dx = m31; t.affine._dy = m32; t.m_33 = m33;
+    }
+    }
+
+    t.m_dirty = type;
+    t.m_type = type;
+
+    return t;
+}
+
+/*!
+    \fn QTransform & QTransform::operator*=(qreal scalar)
+    \overload
+
+    Returns the result of performing an element-wise multiplication of this
+    matrix with the given \a scalar.
+*/
+
+/*!
+    \fn QTransform & QTransform::operator/=(qreal scalar)
+    \overload
+
+    Returns the result of performing an element-wise division of this
+    matrix by the given \a scalar.
+*/
+
+/*!
+    \fn QTransform & QTransform::operator+=(qreal scalar)
+    \overload
+
+    Returns the matrix obtained by adding the given \a scalar to each
+    element of this matrix.
+*/
+
+/*!
+    \fn QTransform & QTransform::operator-=(qreal scalar)
+    \overload
+
+    Returns the matrix obtained by subtracting the given \a scalar from each
+    element of this matrix.
+*/
+
+/*!
+    Assigns the given \a matrix's values to this matrix.
+*/
+QTransform & QTransform::operator=(const QTransform &matrix)
+{
+    affine._m11 = matrix.affine._m11;
+    affine._m12 = matrix.affine._m12;
+    affine._m21 = matrix.affine._m21;
+    affine._m22 = matrix.affine._m22;
+    affine._dx = matrix.affine._dx;
+    affine._dy = matrix.affine._dy;
+    m_13 = matrix.m_13;
+    m_23 = matrix.m_23;
+    m_33 = matrix.m_33;
+    m_type = matrix.m_type;
+    m_dirty = matrix.m_dirty;
+
+    return *this;
+}
+
+/*!
+    Resets the matrix to an identity matrix, i.e. all elements are set
+    to zero, except \c m11 and \c m22 (specifying the scale) and \c m33
+    which are set to 1.
+
+    \sa QTransform(), isIdentity(), {QTransform#Basic Matrix
+    Operations}{Basic Matrix Operations}
+*/
+void QTransform::reset()
+{
+    affine._m11 = affine._m22 = m_33 = 1.0;
+    affine._m12 = m_13 = affine._m21 = m_23 = affine._dx = affine._dy = 0;
+    m_type = TxNone;
+    m_dirty = TxNone;
+}
+
+#ifndef QT_NO_DATASTREAM
+/*!
+    \fn QDataStream &operator<<(QDataStream &stream, const QTransform &matrix)
+    \since 4.3
+    \relates QTransform
+
+    Writes the given \a matrix to the given \a stream and returns a
+    reference to the stream.
+
+    \sa {Format of the QDataStream Operators}
+*/
+QDataStream & operator<<(QDataStream &s, const QTransform &m)
+{
+    s << double(m.m11())
+      << double(m.m12())
+      << double(m.m13())
+      << double(m.m21())
+      << double(m.m22())
+      << double(m.m23())
+      << double(m.m31())
+      << double(m.m32())
+      << double(m.m33());
+    return s;
+}
+
+/*!
+    \fn QDataStream &operator>>(QDataStream &stream, QTransform &matrix)
+    \since 4.3
+    \relates QTransform
+
+    Reads the given \a matrix from the given \a stream and returns a
+    reference to the stream.
+
+    \sa {Format of the QDataStream Operators}
+*/
+QDataStream & operator>>(QDataStream &s, QTransform &t)
+{
+     double m11, m12, m13,
+         m21, m22, m23,
+         m31, m32, m33;
+
+     s >> m11;
+     s >> m12;
+     s >> m13;
+     s >> m21;
+     s >> m22;
+     s >> m23;
+     s >> m31;
+     s >> m32;
+     s >> m33;
+     t.setMatrix(m11, m12, m13,
+                 m21, m22, m23,
+                 m31, m32, m33);
+     return s;
+}
+
+#endif // QT_NO_DATASTREAM
+
+#ifndef QT_NO_DEBUG_STREAM
+QDebug operator<<(QDebug dbg, const QTransform &m)
+{
+    dbg.nospace() << "QTransform("
+                  << "11="  << m.m11()
+                  << " 12=" << m.m12()
+                  << " 13=" << m.m13()
+                  << " 21=" << m.m21()
+                  << " 22=" << m.m22()
+                  << " 23=" << m.m23()
+                  << " 31=" << m.m31()
+                  << " 32=" << m.m32()
+                  << " 33=" << m.m33()
+                  << ')';
+    return dbg.space();
+}
+#endif
+
+/*!
+    \fn QPoint operator*(const QPoint &point, const QTransform &matrix)
+    \relates QTransform
+
+    This is the same as \a{matrix}.map(\a{point}).
+
+    \sa QTransform::map()
+*/
+QPoint QTransform::map(const QPoint &p) const
+{
+    qreal fx = p.x();
+    qreal fy = p.y();
+
+    qreal x = 0, y = 0;
+
+    TransformationType t = inline_type();
+    switch(t) {
+    case TxNone:
+        x = fx;
+        y = fy;
+        break;
+    case TxTranslate:
+        x = fx + affine._dx;
+        y = fy + affine._dy;
+        break;
+    case TxScale:
+        x = affine._m11 * fx + affine._dx;
+        y = affine._m22 * fy + affine._dy;
+        break;
+    case TxRotate:
+    case TxShear:
+    case TxProject:
+        x = affine._m11 * fx + affine._m21 * fy + affine._dx;
+        y = affine._m12 * fx + affine._m22 * fy + affine._dy;
+        if (t == TxProject) {
+            qreal w = 1./(m_13 * fx + m_23 * fy + m_33);
+            x *= w;
+            y *= w;
+        }
+    }
+    return QPoint(qRound(x), qRound(y));
+}
+
+
+/*!
+    \fn QPointF operator*(const QPointF &point, const QTransform &matrix)
+    \relates QTransform
+
+    Same as \a{matrix}.map(\a{point}).
+
+    \sa QTransform::map()
+*/
+
+/*!
+    \overload
+
+    Creates and returns a QPointF object that is a copy of the given point,
+    \a p, mapped into the coordinate system defined by this matrix.
+*/
+QPointF QTransform::map(const QPointF &p) const
+{
+    qreal fx = p.x();
+    qreal fy = p.y();
+
+    qreal x = 0, y = 0;
+
+    TransformationType t = inline_type();
+    switch(t) {
+    case TxNone:
+        x = fx;
+        y = fy;
+        break;
+    case TxTranslate:
+        x = fx + affine._dx;
+        y = fy + affine._dy;
+        break;
+    case TxScale:
+        x = affine._m11 * fx + affine._dx;
+        y = affine._m22 * fy + affine._dy;
+        break;
+    case TxRotate:
+    case TxShear:
+    case TxProject:
+        x = affine._m11 * fx + affine._m21 * fy + affine._dx;
+        y = affine._m12 * fx + affine._m22 * fy + affine._dy;
+        if (t == TxProject) {
+            qreal w = 1./(m_13 * fx + m_23 * fy + m_33);
+            x *= w;
+            y *= w;
+        }
+    }
+    return QPointF(x, y);
+}
+
+/*!
+    \fn QPoint QTransform::map(const QPoint &point) const
+    \overload
+
+    Creates and returns a QPoint object that is a copy of the given \a
+    point, mapped into the coordinate system defined by this
+    matrix. Note that the transformed coordinates are rounded to the
+    nearest integer.
+*/
+
+/*!
+    \fn QLineF operator*(const QLineF &line, const QTransform &matrix)
+    \relates QTransform
+
+    This is the same as \a{matrix}.map(\a{line}).
+
+    \sa QTransform::map()
+*/
+
+/*!
+    \fn QLine operator*(const QLine &line, const QTransform &matrix)
+    \relates QTransform
+
+    This is the same as \a{matrix}.map(\a{line}).
+
+    \sa QTransform::map()
+*/
+
+/*!
+    \overload
+
+    Creates and returns a QLineF object that is a copy of the given line,
+    \a l, mapped into the coordinate system defined by this matrix.
+*/
+QLine QTransform::map(const QLine &l) const
+{
+    qreal fx1 = l.x1();
+    qreal fy1 = l.y1();
+    qreal fx2 = l.x2();
+    qreal fy2 = l.y2();
+
+    qreal x1 = 0, y1 = 0, x2 = 0, y2 = 0;
+
+    TransformationType t = inline_type();
+    switch(t) {
+    case TxNone:
+        x1 = fx1;
+        y1 = fy1;
+        x2 = fx2;
+        y2 = fy2;
+        break;
+    case TxTranslate:
+        x1 = fx1 + affine._dx;
+        y1 = fy1 + affine._dy;
+        x2 = fx2 + affine._dx;
+        y2 = fy2 + affine._dy;
+        break;
+    case TxScale:
+        x1 = affine._m11 * fx1 + affine._dx;
+        y1 = affine._m22 * fy1 + affine._dy;
+        x2 = affine._m11 * fx2 + affine._dx;
+        y2 = affine._m22 * fy2 + affine._dy;
+        break;
+    case TxRotate:
+    case TxShear:
+    case TxProject:
+        x1 = affine._m11 * fx1 + affine._m21 * fy1 + affine._dx;
+        y1 = affine._m12 * fx1 + affine._m22 * fy1 + affine._dy;
+        x2 = affine._m11 * fx2 + affine._m21 * fy2 + affine._dx;
+        y2 = affine._m12 * fx2 + affine._m22 * fy2 + affine._dy;
+        if (t == TxProject) {
+            qreal w = 1./(m_13 * fx1 + m_23 * fy1 + m_33);
+            x1 *= w;
+            y1 *= w;
+            w = 1./(m_13 * fx2 + m_23 * fy2 + m_33);
+            x2 *= w;
+            y2 *= w;
+        }
+    }
+    return QLine(qRound(x1), qRound(y1), qRound(x2), qRound(y2));
+}
+
+/*!
+    \overload
+
+    \fn QLineF QTransform::map(const QLineF &line) const
+
+    Creates and returns a QLine object that is a copy of the given \a
+    line, mapped into the coordinate system defined by this matrix.
+    Note that the transformed coordinates are rounded to the nearest
+    integer.
+*/
+
+QLineF QTransform::map(const QLineF &l) const
+{
+    qreal fx1 = l.x1();
+    qreal fy1 = l.y1();
+    qreal fx2 = l.x2();
+    qreal fy2 = l.y2();
+
+    qreal x1 = 0, y1 = 0, x2 = 0, y2 = 0;
+
+    TransformationType t = inline_type();
+    switch(t) {
+    case TxNone:
+        x1 = fx1;
+        y1 = fy1;
+        x2 = fx2;
+        y2 = fy2;
+        break;
+    case TxTranslate:
+        x1 = fx1 + affine._dx;
+        y1 = fy1 + affine._dy;
+        x2 = fx2 + affine._dx;
+        y2 = fy2 + affine._dy;
+        break;
+    case TxScale:
+        x1 = affine._m11 * fx1 + affine._dx;
+        y1 = affine._m22 * fy1 + affine._dy;
+        x2 = affine._m11 * fx2 + affine._dx;
+        y2 = affine._m22 * fy2 + affine._dy;
+        break;
+    case TxRotate:
+    case TxShear:
+    case TxProject:
+        x1 = affine._m11 * fx1 + affine._m21 * fy1 + affine._dx;
+        y1 = affine._m12 * fx1 + affine._m22 * fy1 + affine._dy;
+        x2 = affine._m11 * fx2 + affine._m21 * fy2 + affine._dx;
+        y2 = affine._m12 * fx2 + affine._m22 * fy2 + affine._dy;
+        if (t == TxProject) {
+            qreal w = 1./(m_13 * fx1 + m_23 * fy1 + m_33);
+            x1 *= w;
+            y1 *= w;
+            w = 1./(m_13 * fx2 + m_23 * fy2 + m_33);
+            x2 *= w;
+            y2 *= w;
+        }
+    }
+    return QLineF(x1, y1, x2, y2);
+}
+
+static QPolygonF mapProjective(const QTransform &transform, const QPolygonF &poly)
+{
+    if (poly.size() == 0)
+        return poly;
+
+    if (poly.size() == 1)
+        return QPolygonF() << transform.map(poly.at(0));
+
+    QPainterPath path;
+    path.addPolygon(poly);
+
+    path = transform.map(path);
+
+    QPolygonF result;
+    for (int i = 0; i < path.elementCount(); ++i)
+        result << path.elementAt(i);
+    return result;
+}
+
+
+/*!
+    \fn QPolygonF operator *(const QPolygonF &polygon, const QTransform &matrix)
+    \since 4.3
+    \relates QTransform
+
+    This is the same as \a{matrix}.map(\a{polygon}).
+
+    \sa QTransform::map()
+*/
+
+/*!
+    \fn QPolygon operator*(const QPolygon &polygon, const QTransform &matrix)
+    \relates QTransform
+
+    This is the same as \a{matrix}.map(\a{polygon}).
+
+    \sa QTransform::map()
+*/
+
+/*!
+    \fn QPolygonF QTransform::map(const QPolygonF &polygon) const
+    \overload
+
+    Creates and returns a QPolygonF object that is a copy of the given
+    \a polygon, mapped into the coordinate system defined by this
+    matrix.
+*/
+QPolygonF QTransform::map(const QPolygonF &a) const
+{
+    TransformationType t = inline_type();
+    if (t <= TxTranslate)
+        return a.translated(affine._dx, affine._dy);
+
+    if (t >= QTransform::TxProject)
+        return mapProjective(*this, a);
+
+    int size = a.size();
+    int i;
+    QPolygonF p(size);
+    const QPointF *da = a.constData();
+    QPointF *dp = p.data();
+
+    for(i = 0; i < size; ++i) {
+        MAP(da[i].xp, da[i].yp, dp[i].xp, dp[i].yp);
+    }
+    return p;
+}
+
+/*!
+    \fn QPolygon QTransform::map(const QPolygon &polygon) const
+    \overload
+
+    Creates and returns a QPolygon object that is a copy of the given
+    \a polygon, mapped into the coordinate system defined by this
+    matrix. Note that the transformed coordinates are rounded to the
+    nearest integer.
+*/
+QPolygon QTransform::map(const QPolygon &a) const
+{
+    TransformationType t = inline_type();
+    if (t <= TxTranslate)
+        return a.translated(qRound(affine._dx), qRound(affine._dy));
+
+    if (t >= QTransform::TxProject)
+        return mapProjective(*this, QPolygonF(a)).toPolygon();
+
+    int size = a.size();
+    int i;
+    QPolygon p(size);
+    const QPoint *da = a.constData();
+    QPoint *dp = p.data();
+
+    for(i = 0; i < size; ++i) {
+        qreal nx = 0, ny = 0;
+        MAP(da[i].xp, da[i].yp, nx, ny);
+        dp[i].xp = qRound(nx);
+        dp[i].yp = qRound(ny);
+    }
+    return p;
+}
+
+/*!
+    \fn QRegion operator*(const QRegion &region, const QTransform &matrix)
+    \relates QTransform
+
+    This is the same as \a{matrix}.map(\a{region}).
+
+    \sa QTransform::map()
+*/
+
+extern QPainterPath qt_regionToPath(const QRegion &region);
+
+/*!
+    \fn QRegion QTransform::map(const QRegion &region) const
+    \overload
+
+    Creates and returns a QRegion object that is a copy of the given
+    \a region, mapped into the coordinate system defined by this matrix.
+
+    Calling this method can be rather expensive if rotations or
+    shearing are used.
+*/
+QRegion QTransform::map(const QRegion &r) const
+{
+    TransformationType t = inline_type();
+    if (t == TxNone)
+        return r;
+
+    if (t == TxTranslate) {
+        QRegion copy(r);
+        copy.translate(qRound(affine._dx), qRound(affine._dy));
+        return copy;
+    }
+
+    if (t == TxScale && r.numRects() == 1)
+        return QRegion(mapRect(r.boundingRect()));
+
+    QPainterPath p = map(qt_regionToPath(r));
+    return p.toFillPolygon(QTransform()).toPolygon();
+}
+
+struct QHomogeneousCoordinate
+{
+    qreal x;
+    qreal y;
+    qreal w;
+
+    QHomogeneousCoordinate() {}
+    QHomogeneousCoordinate(qreal x_, qreal y_, qreal w_) : x(x_), y(y_), w(w_) {}
+
+    const QPointF toPoint() const {
+        qreal iw = 1. / w;
+        return QPointF(x * iw, y * iw);
+    }
+};
+
+static inline QHomogeneousCoordinate mapHomogeneous(const QTransform &transform, const QPointF &p)
+{
+    QHomogeneousCoordinate c;
+    c.x = transform.m11() * p.x() + transform.m21() * p.y() + transform.m31();
+    c.y = transform.m12() * p.x() + transform.m22() * p.y() + transform.m32();
+    c.w = transform.m13() * p.x() + transform.m23() * p.y() + transform.m33();
+    return c;
+}
+
+static inline bool lineTo_clipped(QPainterPath &path, const QTransform &transform, const QPointF &a, const QPointF &b,
+                                  bool needsMoveTo, bool needsLineTo = true)
+{
+    QHomogeneousCoordinate ha = mapHomogeneous(transform, a);
+    QHomogeneousCoordinate hb = mapHomogeneous(transform, b);
+
+    if (ha.w < Q_NEAR_CLIP && hb.w < Q_NEAR_CLIP)
+        return false;
+
+    if (hb.w < Q_NEAR_CLIP) {
+        const qreal t = (Q_NEAR_CLIP - hb.w) / (ha.w - hb.w);
+
+        hb.x += (ha.x - hb.x) * t;
+        hb.y += (ha.y - hb.y) * t;
+        hb.w = qreal(Q_NEAR_CLIP);
+    } else if (ha.w < Q_NEAR_CLIP) {
+        const qreal t = (Q_NEAR_CLIP - ha.w) / (hb.w - ha.w);
+
+        ha.x += (hb.x - ha.x) * t;
+        ha.y += (hb.y - ha.y) * t;
+        ha.w = qreal(Q_NEAR_CLIP);
+
+        const QPointF p = ha.toPoint();
+        if (needsMoveTo) {
+            path.moveTo(p);
+            needsMoveTo = false;
+        } else {
+            path.lineTo(p);
+        }
+    }
+
+    if (needsMoveTo)
+        path.moveTo(ha.toPoint());
+
+    if (needsLineTo)
+        path.lineTo(hb.toPoint());
+
+    return true;
+}
+
+static inline bool cubicTo_clipped(QPainterPath &path, const QTransform &transform, const QPointF &a, const QPointF &b, const QPointF &c, const QPointF &d, bool needsMoveTo)
+{
+    // Convert projective xformed curves to line
+    // segments so they can be transformed more accurately
+    QPolygonF segment = QBezier::fromPoints(a, b, c, d).toPolygon();
+
+    for (int i = 0; i < segment.size() - 1; ++i)
+        if (lineTo_clipped(path, transform, segment.at(i), segment.at(i+1), needsMoveTo))
+            needsMoveTo = false;
+
+    return !needsMoveTo;
+}
+
+static QPainterPath mapProjective(const QTransform &transform, const QPainterPath &path)
+{
+    QPainterPath result;
+
+    QPointF last;
+    QPointF lastMoveTo;
+    bool needsMoveTo = true;
+    for (int i = 0; i < path.elementCount(); ++i) {
+        switch (path.elementAt(i).type) {
+        case QPainterPath::MoveToElement:
+            if (i > 0 && lastMoveTo != last)
+                lineTo_clipped(result, transform, last, lastMoveTo, needsMoveTo);
+
+            lastMoveTo = path.elementAt(i);
+            last = path.elementAt(i);
+            needsMoveTo = true;
+            break;
+        case QPainterPath::LineToElement:
+            if (lineTo_clipped(result, transform, last, path.elementAt(i), needsMoveTo))
+                needsMoveTo = false;
+            last = path.elementAt(i);
+            break;
+        case QPainterPath::CurveToElement:
+            if (cubicTo_clipped(result, transform, last, path.elementAt(i), path.elementAt(i+1), path.elementAt(i+2), needsMoveTo))
+                needsMoveTo = false;
+            i += 2;
+            last = path.elementAt(i);
+            break;
+        default:
+            Q_ASSERT(false);
+        }
+    }
+
+    if (path.elementCount() > 0 && lastMoveTo != last)
+        lineTo_clipped(result, transform, last, lastMoveTo, needsMoveTo, false);
+
+    result.setFillRule(path.fillRule());
+    return result;
+}
+
+/*!
+    \fn QPainterPath operator *(const QPainterPath &path, const QTransform &matrix)
+    \since 4.3
+    \relates QTransform
+
+    This is the same as \a{matrix}.map(\a{path}).
+
+    \sa QTransform::map()
+*/
+
+/*!
+    \overload
+
+    Creates and returns a QPainterPath object that is a copy of the
+    given \a path, mapped into the coordinate system defined by this
+    matrix.
+*/
+QPainterPath QTransform::map(const QPainterPath &path) const
+{
+    TransformationType t = inline_type();
+    if (t == TxNone || path.isEmpty())
+        return path;
+
+    if (t >= TxProject)
+        return mapProjective(*this, path);
+
+    QPainterPath copy = path;
+
+    if (t == TxTranslate) {
+        copy.translate(affine._dx, affine._dy);
+    } else {
+        copy.detach();
+        // Full xform
+        for (int i=0; i<path.elementCount(); ++i) {
+            QPainterPath::Element &e = copy.d_ptr->elements[i];
+            MAP(e.x, e.y, e.x, e.y);
+        }
+    }
+
+    return copy;
+}
+
+/*!
+    \fn QPolygon QTransform::mapToPolygon(const QRect &rectangle) const
+
+    Creates and returns a QPolygon representation of the given \a
+    rectangle, mapped into the coordinate system defined by this
+    matrix.
+
+    The rectangle's coordinates are transformed using the following
+    formulas:
+
+    \snippet doc/src/snippets/code/src_gui_painting_qtransform.cpp 1
+
+    Polygons and rectangles behave slightly differently when
+    transformed (due to integer rounding), so
+    \c{matrix.map(QPolygon(rectangle))} is not always the same as
+    \c{matrix.mapToPolygon(rectangle)}.
+
+    \sa mapRect(), {QTransform#Basic Matrix Operations}{Basic Matrix
+    Operations}
+*/
+QPolygon QTransform::mapToPolygon(const QRect &rect) const
+{
+    TransformationType t = inline_type();
+
+    QPolygon a(4);
+    qreal x[4] = { 0, 0, 0, 0 }, y[4] = { 0, 0, 0, 0 };
+    if (t <= TxScale) {
+        x[0] = affine._m11*rect.x() + affine._dx;
+        y[0] = affine._m22*rect.y() + affine._dy;
+        qreal w = affine._m11*rect.width();
+        qreal h = affine._m22*rect.height();
+        if (w < 0) {
+            w = -w;
+            x[0] -= w;
+        }
+        if (h < 0) {
+            h = -h;
+            y[0] -= h;
+        }
+        x[1] = x[0]+w;
+        x[2] = x[1];
+        x[3] = x[0];
+        y[1] = y[0];
+        y[2] = y[0]+h;
+        y[3] = y[2];
+    } else {
+        qreal right = rect.x() + rect.width();
+        qreal bottom = rect.y() + rect.height();
+        MAP(rect.x(), rect.y(), x[0], y[0]);
+        MAP(right, rect.y(), x[1], y[1]);
+        MAP(right, bottom, x[2], y[2]);
+        MAP(rect.x(), bottom, x[3], y[3]);
+    }
+
+    // all coordinates are correctly, tranform to a pointarray
+    // (rounding to the next integer)
+    a.setPoints(4, qRound(x[0]), qRound(y[0]),
+                qRound(x[1]), qRound(y[1]),
+                qRound(x[2]), qRound(y[2]),
+                qRound(x[3]), qRound(y[3]));
+    return a;
+}
+
+/*!
+    Creates a transformation matrix, \a trans, that maps a unit square
+    to a four-sided polygon, \a quad. Returns true if the transformation
+    is constructed or false if such a transformation does not exist.
+
+    \sa quadToSquare(), quadToQuad()
+*/
+bool QTransform::squareToQuad(const QPolygonF &quad, QTransform &trans)
+{
+    if (quad.count() != 4)
+        return false;
+
+    qreal dx0 = quad[0].x();
+    qreal dx1 = quad[1].x();
+    qreal dx2 = quad[2].x();
+    qreal dx3 = quad[3].x();
+
+    qreal dy0 = quad[0].y();
+    qreal dy1 = quad[1].y();
+    qreal dy2 = quad[2].y();
+    qreal dy3 = quad[3].y();
+
+    double ax  = dx0 - dx1 + dx2 - dx3;
+    double ay  = dy0 - dy1 + dy2 - dy3;
+
+    if (!ax && !ay) { //afine transform
+        trans.setMatrix(dx1 - dx0, dy1 - dy0,  0,
+                        dx2 - dx1, dy2 - dy1,  0,
+                        dx0,       dy0,  1);
+    } else {
+        double ax1 = dx1 - dx2;
+        double ax2 = dx3 - dx2;
+        double ay1 = dy1 - dy2;
+        double ay2 = dy3 - dy2;
+
+        /*determinants */
+        double gtop    =  ax  * ay2 - ax2 * ay;
+        double htop    =  ax1 * ay  - ax  * ay1;
+        double bottom  =  ax1 * ay2 - ax2 * ay1;
+
+        double a, b, c, d, e, f, g, h;  /*i is always 1*/
+
+        if (!bottom)
+            return false;
+
+        g = gtop/bottom;
+        h = htop/bottom;
+
+        a = dx1 - dx0 + g * dx1;
+        b = dx3 - dx0 + h * dx3;
+        c = dx0;
+        d = dy1 - dy0 + g * dy1;
+        e = dy3 - dy0 + h * dy3;
+        f = dy0;
+
+        trans.setMatrix(a, d, g,
+                        b, e, h,
+                        c, f, 1.0);
+    }
+
+    return true;
+}
+
+/*!
+    \fn bool QTransform::quadToSquare(const QPolygonF &quad, QTransform &trans)
+
+    Creates a transformation matrix, \a trans, that maps a four-sided polygon,
+    \a quad, to a unit square. Returns true if the transformation is constructed
+    or false if such a transformation does not exist.
+
+    \sa squareToQuad(), quadToQuad()
+*/
+bool QTransform::quadToSquare(const QPolygonF &quad, QTransform &trans)
+{
+    if (!squareToQuad(quad, trans))
+        return false;
+
+    bool invertible = false;
+    trans = trans.inverted(&invertible);
+
+    return invertible;
+}
+
+/*!
+    Creates a transformation matrix, \a trans, that maps a four-sided
+    polygon, \a one, to another four-sided polygon, \a two.
+    Returns true if the transformation is possible; otherwise returns
+    false.
+
+    This is a convenience method combining quadToSquare() and
+    squareToQuad() methods. It allows the input quad to be
+    transformed into any other quad.
+
+    \sa squareToQuad(), quadToSquare()
+*/
+bool QTransform::quadToQuad(const QPolygonF &one,
+                            const QPolygonF &two,
+                            QTransform &trans)
+{
+    QTransform stq;
+    if (!quadToSquare(one, trans))
+        return false;
+    if (!squareToQuad(two, stq))
+        return false;
+    trans *= stq;
+    //qDebug()<<"Final = "<<trans;
+    return true;
+}
+
+/*!
+    Sets the matrix elements to the specified values, \a m11,
+    \a m12, \a m13 \a m21, \a m22, \a m23 \a m31, \a m32 and
+    \a m33. Note that this function replaces the previous values.
+    QTransform provides the translate(), rotate(), scale() and shear()
+    convenience functions to manipulate the various matrix elements
+    based on the currently defined coordinate system.
+
+    \sa QTransform()
+*/
+
+void QTransform::setMatrix(qreal m11, qreal m12, qreal m13,
+                           qreal m21, qreal m22, qreal m23,
+                           qreal m31, qreal m32, qreal m33)
+{
+    affine._m11 = m11; affine._m12 = m12; m_13 = m13;
+    affine._m21 = m21; affine._m22 = m22; m_23 = m23;
+    affine._dx = m31; affine._dy = m32; m_33 = m33;
+    m_type = TxNone;
+    m_dirty = TxProject;
+}
+
+static inline bool needsPerspectiveClipping(const QRectF &rect, const QTransform &transform)
+{
+    const qreal wx = qMin(transform.m13() * rect.left(), transform.m13() * rect.right());
+    const qreal wy = qMin(transform.m23() * rect.top(), transform.m23() * rect.bottom());
+
+    return wx + wy + transform.m33() < Q_NEAR_CLIP;
+}
+
+QRect QTransform::mapRect(const QRect &rect) const
+{
+    TransformationType t = inline_type();
+    if (t <= TxTranslate)
+        return rect.translated(qRound(affine._dx), qRound(affine._dy));
+
+    if (t <= TxScale) {
+        int x = qRound(affine._m11*rect.x() + affine._dx);
+        int y = qRound(affine._m22*rect.y() + affine._dy);
+        int w = qRound(affine._m11*rect.width());
+        int h = qRound(affine._m22*rect.height());
+        if (w < 0) {
+            w = -w;
+            x -= w;
+        }
+        if (h < 0) {
+            h = -h;
+            y -= h;
+        }
+        return QRect(x, y, w, h);
+    } else if (t < TxProject || !needsPerspectiveClipping(rect, *this)) {
+        // see mapToPolygon for explanations of the algorithm.
+        qreal x = 0, y = 0;
+        MAP(rect.left(), rect.top(), x, y);
+        qreal xmin = x;
+        qreal ymin = y;
+        qreal xmax = x;
+        qreal ymax = y;
+        MAP(rect.right() + 1, rect.top(), x, y);
+        xmin = qMin(xmin, x);
+        ymin = qMin(ymin, y);
+        xmax = qMax(xmax, x);
+        ymax = qMax(ymax, y);
+        MAP(rect.right() + 1, rect.bottom() + 1, x, y);
+        xmin = qMin(xmin, x);
+        ymin = qMin(ymin, y);
+        xmax = qMax(xmax, x);
+        ymax = qMax(ymax, y);
+        MAP(rect.left(), rect.bottom() + 1, x, y);
+        xmin = qMin(xmin, x);
+        ymin = qMin(ymin, y);
+        xmax = qMax(xmax, x);
+        ymax = qMax(ymax, y);
+        return QRect(qRound(xmin), qRound(ymin), qRound(xmax)-qRound(xmin), qRound(ymax)-qRound(ymin));
+    } else {
+        QPainterPath path;
+        path.addRect(rect);
+        return map(path).boundingRect().toRect();
+    }
+}
+
+/*!
+    \fn QRectF QTransform::mapRect(const QRectF &rectangle) const
+
+    Creates and returns a QRectF object that is a copy of the given \a
+    rectangle, mapped into the coordinate system defined by this
+    matrix.
+
+    The rectangle's coordinates are transformed using the following
+    formulas:
+
+    \snippet doc/src/snippets/code/src_gui_painting_qtransform.cpp 2
+
+    If rotation or shearing has been specified, this function returns
+    the \e bounding rectangle. To retrieve the exact region the given
+    \a rectangle maps to, use the mapToPolygon() function instead.
+
+    \sa mapToPolygon(), {QTransform#Basic Matrix Operations}{Basic Matrix
+    Operations}
+*/
+QRectF QTransform::mapRect(const QRectF &rect) const
+{
+    TransformationType t = inline_type();
+    if (t <= TxTranslate)
+        return rect.translated(affine._dx, affine._dy);
+
+    if (t <= TxScale) {
+        qreal x = affine._m11*rect.x() + affine._dx;
+        qreal y = affine._m22*rect.y() + affine._dy;
+        qreal w = affine._m11*rect.width();
+        qreal h = affine._m22*rect.height();
+        if (w < 0) {
+            w = -w;
+            x -= w;
+        }
+        if (h < 0) {
+            h = -h;
+            y -= h;
+        }
+        return QRectF(x, y, w, h);
+    } else if (t < TxProject || !needsPerspectiveClipping(rect, *this)) {
+        qreal x = 0, y = 0;
+        MAP(rect.x(), rect.y(), x, y);
+        qreal xmin = x;
+        qreal ymin = y;
+        qreal xmax = x;
+        qreal ymax = y;
+        MAP(rect.x() + rect.width(), rect.y(), x, y);
+        xmin = qMin(xmin, x);
+        ymin = qMin(ymin, y);
+        xmax = qMax(xmax, x);
+        ymax = qMax(ymax, y);
+        MAP(rect.x() + rect.width(), rect.y() + rect.height(), x, y);
+        xmin = qMin(xmin, x);
+        ymin = qMin(ymin, y);
+        xmax = qMax(xmax, x);
+        ymax = qMax(ymax, y);
+        MAP(rect.x(), rect.y() + rect.height(), x, y);
+        xmin = qMin(xmin, x);
+        ymin = qMin(ymin, y);
+        xmax = qMax(xmax, x);
+        ymax = qMax(ymax, y);
+        return QRectF(xmin, ymin, xmax-xmin, ymax - ymin);
+    } else {
+        QPainterPath path;
+        path.addRect(rect);
+        return map(path).boundingRect();
+    }
+}
+
+/*!
+    \fn QRect QTransform::mapRect(const QRect &rectangle) const
+    \overload
+
+    Creates and returns a QRect object that is a copy of the given \a
+    rectangle, mapped into the coordinate system defined by this
+    matrix. Note that the transformed coordinates are rounded to the
+    nearest integer.
+*/
+
+/*!
+    Maps the given coordinates \a x and \a y into the coordinate
+    system defined by this matrix. The resulting values are put in *\a
+    tx and *\a ty, respectively.
+
+    The coordinates are transformed using the following formulas:
+
+    \snippet doc/src/snippets/code/src_gui_painting_qtransform.cpp 3
+
+    The point (x, y) is the original point, and (x', y') is the
+    transformed point.
+
+    \sa {QTransform#Basic Matrix Operations}{Basic Matrix Operations}
+*/
+void QTransform::map(qreal x, qreal y, qreal *tx, qreal *ty) const
+{
+    TransformationType t = inline_type();
+    MAP(x, y, *tx, *ty);
+}
+
+/*!
+    \overload
+
+    Maps the given coordinates \a x and \a y into the coordinate
+    system defined by this matrix. The resulting values are put in *\a
+    tx and *\a ty, respectively. Note that the transformed coordinates
+    are rounded to the nearest integer.
+*/
+void QTransform::map(int x, int y, int *tx, int *ty) const
+{
+    TransformationType t = inline_type();
+    qreal fx = 0, fy = 0;
+    MAP(x, y, fx, fy);
+    *tx = qRound(fx);
+    *ty = qRound(fy);
+}
+
+/*!
+  Returns the QTransform as an affine matrix.
+
+  \warning If a perspective transformation has been specified,
+  then the conversion will cause loss of data.
+*/
+const QMatrix &QTransform::toAffine() const
+{
+    return affine;
+}
+
+/*!
+  Returns the transformation type of this matrix.
+
+  The transformation type is the highest enumeration value
+  capturing all of the matrix's transformations. For example,
+  if the matrix both scales and shears, the type would be \c TxShear,
+  because \c TxShear has a higher enumeration value than \c TxScale.
+
+  Knowing the transformation type of a matrix is useful for optimization:
+  you can often handle specific types more optimally than handling
+  the generic case.
+  */
+QTransform::TransformationType QTransform::type() const
+{
+    if(m_dirty == TxNone || m_dirty < m_type)
+        return static_cast<TransformationType>(m_type);
+
+    switch (static_cast<TransformationType>(m_dirty)) {
+    case TxProject:
+        if (!qFuzzyIsNull(m_13) || !qFuzzyIsNull(m_23) || !qFuzzyIsNull(m_33 - 1)) {
+             m_type = TxProject;
+             break;
+         }
+    case TxShear:
+    case TxRotate:
+        if (!qFuzzyIsNull(affine._m12) || !qFuzzyIsNull(affine._m21)) {
+            const qreal dot = affine._m11 * affine._m12 + affine._m21 * affine._m22;
+            if (qFuzzyIsNull(dot))
+                m_type = TxRotate;
+            else
+                m_type = TxShear;
+            break;
+        }
+    case TxScale:
+        if (!qFuzzyIsNull(affine._m11 - 1) || !qFuzzyIsNull(affine._m22 - 1)) {
+            m_type = TxScale;
+            break;
+        }
+    case TxTranslate:
+        if (!qFuzzyIsNull(affine._dx) || !qFuzzyIsNull(affine._dy)) {
+            m_type = TxTranslate;
+            break;
+        }
+    case TxNone:
+        m_type = TxNone;
+        break;
+    }
+
+    m_dirty = TxNone;
+    return static_cast<TransformationType>(m_type);
+}
+
+/*!
+
+    Returns the transform as a QVariant.
+*/
+QTransform::operator QVariant() const
+{
+    return QVariant(QVariant::Transform, this);
+}
+
+
+/*!
+    \fn bool QTransform::isInvertible() const
+
+    Returns true if the matrix is invertible, otherwise returns false.
+
+    \sa inverted()
+*/
+
+/*!
+    \fn qreal QTransform::det() const
+    \obsolete
+
+    Returns the matrix's determinant. Use determinant() instead.
+*/
+
+
+/*!
+    \fn qreal QTransform::m11() const
+
+    Returns the horizontal scaling factor.
+
+    \sa scale(), {QTransform#Basic Matrix Operations}{Basic Matrix
+    Operations}
+*/
+
+/*!
+    \fn qreal QTransform::m12() const
+
+    Returns the vertical shearing factor.
+
+    \sa shear(), {QTransform#Basic Matrix Operations}{Basic Matrix
+    Operations}
+*/
+
+/*!
+    \fn qreal QTransform::m21() const
+
+    Returns the horizontal shearing factor.
+
+    \sa shear(), {QTransform#Basic Matrix Operations}{Basic Matrix
+    Operations}
+*/
+
+/*!
+    \fn qreal QTransform::m22() const
+
+    Returns the vertical scaling factor.
+
+    \sa scale(), {QTransform#Basic Matrix Operations}{Basic Matrix
+    Operations}
+*/
+
+/*!
+    \fn qreal QTransform::dx() const
+
+    Returns the horizontal translation factor.
+
+    \sa m31(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix
+    Operations}
+*/
+
+/*!
+    \fn qreal QTransform::dy() const
+
+    Returns the vertical translation factor.
+
+    \sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix
+    Operations}
+*/
+
+
+/*!
+    \fn qreal QTransform::m13() const
+
+    Returns the horizontal projection factor.
+
+    \sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix
+    Operations}
+*/
+
+
+/*!
+    \fn qreal QTransform::m23() const
+
+    Returns the vertical projection factor.
+
+    \sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix
+    Operations}
+*/
+
+/*!
+    \fn qreal QTransform::m31() const
+
+    Returns the horizontal translation factor.
+
+    \sa dx(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix
+    Operations}
+*/
+
+/*!
+    \fn qreal QTransform::m32() const
+
+    Returns the vertical translation factor.
+
+    \sa dy(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix
+    Operations}
+*/
+
+/*!
+    \fn qreal QTransform::m33() const
+
+    Returns the division factor.
+
+    \sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix
+    Operations}
+*/
+
+/*!
+    \fn qreal QTransform::determinant() const
+
+    Returns the matrix's determinant.
+*/
+
+/*!
+    \fn bool QTransform::isIdentity() const
+
+    Returns true if the matrix is the identity matrix, otherwise
+    returns false.
+
+    \sa reset()
+*/
+
+/*!
+    \fn bool QTransform::isAffine() const
+
+    Returns true if the matrix represent an affine transformation,
+    otherwise returns false.
+*/
+
+/*!
+    \fn bool QTransform::isScaling() const
+
+    Returns true if the matrix represents a scaling
+    transformation, otherwise returns false.
+
+    \sa reset()
+*/
+
+/*!
+    \fn bool QTransform::isRotating() const
+
+    Returns true if the matrix represents some kind of a
+    rotating transformation, otherwise returns false.
+
+    \sa reset()
+*/
+
+/*!
+    \fn bool QTransform::isTranslating() const
+
+    Returns true if the matrix represents a translating
+    transformation, otherwise returns false.
+
+    \sa reset()
+*/
+
+/*!
+    \fn bool qFuzzyCompare(const QTransform& t1, const QTransform& t2)
+
+    \relates QTransform
+    \since 4.6
+
+    Returns true if \a t1 and \a t2 are equal, allowing for a small
+    fuzziness factor for floating-point comparisons; false otherwise.
+*/
+
+
+// returns true if the transform is uniformly scaling
+// (same scale in x and y direction)
+// scale is set to the max of x and y scaling factors
+Q_GUI_EXPORT
+bool qt_scaleForTransform(const QTransform &transform, qreal *scale)
+{
+    const QTransform::TransformationType type = transform.type();
+    if (type <= QTransform::TxTranslate) {
+        *scale = 1;
+        return true;
+    } else if (type == QTransform::TxScale) {
+        const qreal xScale = qAbs(transform.m11());
+        const qreal yScale = qAbs(transform.m22());
+        *scale = qMax(xScale, yScale);
+        return qFuzzyCompare(xScale, yScale);
+    }
+
+    const qreal xScale = transform.m11() * transform.m11()
+                         + transform.m21() * transform.m21();
+    const qreal yScale = transform.m12() * transform.m12()
+                         + transform.m22() * transform.m22();
+    *scale = qSqrt(qMax(xScale, yScale));
+    return type == QTransform::TxRotate && qFuzzyCompare(xScale, yScale);
+}
+
+QT_END_NAMESPACE