0
|
1 |
/****************************************************************************
|
|
2 |
**
|
|
3 |
** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
4 |
** All rights reserved.
|
|
5 |
** Contact: Nokia Corporation (qt-info@nokia.com)
|
|
6 |
**
|
|
7 |
** This file is part of the QtGui module of the Qt Toolkit.
|
|
8 |
**
|
|
9 |
** $QT_BEGIN_LICENSE:LGPL$
|
|
10 |
** No Commercial Usage
|
|
11 |
** This file contains pre-release code and may not be distributed.
|
|
12 |
** You may use this file in accordance with the terms and conditions
|
|
13 |
** contained in the Technology Preview License Agreement accompanying
|
|
14 |
** this package.
|
|
15 |
**
|
|
16 |
** GNU Lesser General Public License Usage
|
|
17 |
** Alternatively, this file may be used under the terms of the GNU Lesser
|
|
18 |
** General Public License version 2.1 as published by the Free Software
|
|
19 |
** Foundation and appearing in the file LICENSE.LGPL included in the
|
|
20 |
** packaging of this file. Please review the following information to
|
|
21 |
** ensure the GNU Lesser General Public License version 2.1 requirements
|
|
22 |
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
|
|
23 |
**
|
|
24 |
** In addition, as a special exception, Nokia gives you certain additional
|
|
25 |
** rights. These rights are described in the Nokia Qt LGPL Exception
|
|
26 |
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
|
|
27 |
**
|
|
28 |
** If you have questions regarding the use of this file, please contact
|
|
29 |
** Nokia at qt-info@nokia.com.
|
|
30 |
**
|
|
31 |
**
|
|
32 |
**
|
|
33 |
**
|
|
34 |
**
|
|
35 |
**
|
|
36 |
**
|
|
37 |
**
|
|
38 |
** $QT_END_LICENSE$
|
|
39 |
**
|
|
40 |
****************************************************************************/
|
|
41 |
#include "qtransform.h"
|
|
42 |
|
|
43 |
#include "qdatastream.h"
|
|
44 |
#include "qdebug.h"
|
|
45 |
#include "qmatrix.h"
|
|
46 |
#include "qregion.h"
|
|
47 |
#include "qpainterpath.h"
|
|
48 |
#include "qvariant.h"
|
|
49 |
#include <qmath.h>
|
|
50 |
|
|
51 |
#include <private/qbezier_p.h>
|
|
52 |
|
|
53 |
QT_BEGIN_NAMESPACE
|
|
54 |
|
|
55 |
#define Q_NEAR_CLIP (sizeof(qreal) == sizeof(double) ? 0.000001 : 0.0001)
|
|
56 |
|
|
57 |
#ifdef MAP
|
|
58 |
# undef MAP
|
|
59 |
#endif
|
|
60 |
#define MAP(x, y, nx, ny) \
|
|
61 |
do { \
|
|
62 |
qreal FX_ = x; \
|
|
63 |
qreal FY_ = y; \
|
|
64 |
switch(t) { \
|
|
65 |
case TxNone: \
|
|
66 |
nx = FX_; \
|
|
67 |
ny = FY_; \
|
|
68 |
break; \
|
|
69 |
case TxTranslate: \
|
|
70 |
nx = FX_ + affine._dx; \
|
|
71 |
ny = FY_ + affine._dy; \
|
|
72 |
break; \
|
|
73 |
case TxScale: \
|
|
74 |
nx = affine._m11 * FX_ + affine._dx; \
|
|
75 |
ny = affine._m22 * FY_ + affine._dy; \
|
|
76 |
break; \
|
|
77 |
case TxRotate: \
|
|
78 |
case TxShear: \
|
|
79 |
case TxProject: \
|
|
80 |
nx = affine._m11 * FX_ + affine._m21 * FY_ + affine._dx; \
|
|
81 |
ny = affine._m12 * FX_ + affine._m22 * FY_ + affine._dy; \
|
|
82 |
if (t == TxProject) { \
|
|
83 |
qreal w = (m_13 * FX_ + m_23 * FY_ + m_33); \
|
|
84 |
if (w < qreal(Q_NEAR_CLIP)) w = qreal(Q_NEAR_CLIP); \
|
|
85 |
w = 1./w; \
|
|
86 |
nx *= w; \
|
|
87 |
ny *= w; \
|
|
88 |
} \
|
|
89 |
} \
|
|
90 |
} while (0)
|
|
91 |
|
|
92 |
/*!
|
|
93 |
\class QTransform
|
|
94 |
\brief The QTransform class specifies 2D transformations of a coordinate system.
|
|
95 |
\since 4.3
|
|
96 |
\ingroup painting
|
|
97 |
|
|
98 |
A transformation specifies how to translate, scale, shear, rotate
|
|
99 |
or project the coordinate system, and is typically used when
|
|
100 |
rendering graphics.
|
|
101 |
|
|
102 |
QTransform differs from QMatrix in that it is a true 3x3 matrix,
|
|
103 |
allowing perspective transformations. QTransform's toAffine()
|
|
104 |
method allows casting QTransform to QMatrix. If a perspective
|
|
105 |
transformation has been specified on the matrix, then the
|
|
106 |
conversion will cause loss of data.
|
|
107 |
|
|
108 |
QTransform is the recommended transformation class in Qt.
|
|
109 |
|
|
110 |
A QTransform object can be built using the setMatrix(), scale(),
|
|
111 |
rotate(), translate() and shear() functions. Alternatively, it
|
|
112 |
can be built by applying \l {QTransform#Basic Matrix
|
|
113 |
Operations}{basic matrix operations}. The matrix can also be
|
|
114 |
defined when constructed, and it can be reset to the identity
|
|
115 |
matrix (the default) using the reset() function.
|
|
116 |
|
|
117 |
The QTransform class supports mapping of graphic primitives: A given
|
|
118 |
point, line, polygon, region, or painter path can be mapped to the
|
|
119 |
coordinate system defined by \e this matrix using the map()
|
|
120 |
function. In case of a rectangle, its coordinates can be
|
|
121 |
transformed using the mapRect() function. A rectangle can also be
|
|
122 |
transformed into a \e polygon (mapped to the coordinate system
|
|
123 |
defined by \e this matrix), using the mapToPolygon() function.
|
|
124 |
|
|
125 |
QTransform provides the isIdentity() function which returns true if
|
|
126 |
the matrix is the identity matrix, and the isInvertible() function
|
|
127 |
which returns true if the matrix is non-singular (i.e. AB = BA =
|
|
128 |
I). The inverted() function returns an inverted copy of \e this
|
|
129 |
matrix if it is invertible (otherwise it returns the identity
|
|
130 |
matrix), and adjoint() returns the matrix's classical adjoint.
|
|
131 |
In addition, QTransform provides the determinant() function which
|
|
132 |
returns the matrix's determinant.
|
|
133 |
|
|
134 |
Finally, the QTransform class supports matrix multiplication, addition
|
|
135 |
and subtraction, and objects of the class can be streamed as well
|
|
136 |
as compared.
|
|
137 |
|
|
138 |
\tableofcontents
|
|
139 |
|
|
140 |
\section1 Rendering Graphics
|
|
141 |
|
|
142 |
When rendering graphics, the matrix defines the transformations
|
|
143 |
but the actual transformation is performed by the drawing routines
|
|
144 |
in QPainter.
|
|
145 |
|
|
146 |
By default, QPainter operates on the associated device's own
|
|
147 |
coordinate system. The standard coordinate system of a
|
|
148 |
QPaintDevice has its origin located at the top-left position. The
|
|
149 |
\e x values increase to the right; \e y values increase
|
|
150 |
downward. For a complete description, see the \l {The Coordinate
|
|
151 |
System}{coordinate system} documentation.
|
|
152 |
|
|
153 |
QPainter has functions to translate, scale, shear and rotate the
|
|
154 |
coordinate system without using a QTransform. For example:
|
|
155 |
|
|
156 |
\table 100%
|
|
157 |
\row
|
|
158 |
\o \inlineimage qtransform-simpletransformation.png
|
|
159 |
\o
|
|
160 |
\snippet doc/src/snippets/transform/main.cpp 0
|
|
161 |
\endtable
|
|
162 |
|
|
163 |
Although these functions are very convenient, it can be more
|
|
164 |
efficient to build a QTransform and call QPainter::setTransform() if you
|
|
165 |
want to perform more than a single transform operation. For
|
|
166 |
example:
|
|
167 |
|
|
168 |
\table 100%
|
|
169 |
\row
|
|
170 |
\o \inlineimage qtransform-combinedtransformation.png
|
|
171 |
\o
|
|
172 |
\snippet doc/src/snippets/transform/main.cpp 1
|
|
173 |
\endtable
|
|
174 |
|
|
175 |
\section1 Basic Matrix Operations
|
|
176 |
|
|
177 |
\image qtransform-representation.png
|
|
178 |
|
|
179 |
A QTransform object contains a 3 x 3 matrix. The \c m31 (\c dx) and
|
|
180 |
\c m32 (\c dy) elements specify horizontal and vertical translation.
|
|
181 |
The \c m11 and \c m22 elements specify horizontal and vertical scaling.
|
|
182 |
The \c m21 and \c m12 elements specify horizontal and vertical \e shearing.
|
|
183 |
And finally, the \c m13 and \c m23 elements specify horizontal and vertical
|
|
184 |
projection, with \c m33 as an additional projection factor.
|
|
185 |
|
|
186 |
QTransform transforms a point in the plane to another point using the
|
|
187 |
following formulas:
|
|
188 |
|
|
189 |
\snippet doc/src/snippets/code/src_gui_painting_qtransform.cpp 0
|
|
190 |
|
|
191 |
The point \e (x, y) is the original point, and \e (x', y') is the
|
|
192 |
transformed point. \e (x', y') can be transformed back to \e (x,
|
|
193 |
y) by performing the same operation on the inverted() matrix.
|
|
194 |
|
|
195 |
The various matrix elements can be set when constructing the
|
|
196 |
matrix, or by using the setMatrix() function later on. They can also
|
|
197 |
be manipulated using the translate(), rotate(), scale() and
|
|
198 |
shear() convenience functions. The currently set values can be
|
|
199 |
retrieved using the m11(), m12(), m13(), m21(), m22(), m23(),
|
|
200 |
m31(), m32(), m33(), dx() and dy() functions.
|
|
201 |
|
|
202 |
Translation is the simplest transformation. Setting \c dx and \c
|
|
203 |
dy will move the coordinate system \c dx units along the X axis
|
|
204 |
and \c dy units along the Y axis. Scaling can be done by setting
|
|
205 |
\c m11 and \c m22. For example, setting \c m11 to 2 and \c m22 to
|
|
206 |
1.5 will double the height and increase the width by 50%. The
|
|
207 |
identity matrix has \c m11, \c m22, and \c m33 set to 1 (all others are set
|
|
208 |
to 0) mapping a point to itself. Shearing is controlled by \c m12
|
|
209 |
and \c m21. Setting these elements to values different from zero
|
|
210 |
will twist the coordinate system. Rotation is achieved by
|
|
211 |
setting both the shearing factors and the scaling factors. Perspective
|
|
212 |
transformation is achieved by setting both the projection factors and
|
|
213 |
the scaling factors.
|
|
214 |
|
|
215 |
Here's the combined transformations example using basic matrix
|
|
216 |
operations:
|
|
217 |
|
|
218 |
\table 100%
|
|
219 |
\row
|
|
220 |
\o \inlineimage qtransform-combinedtransformation2.png
|
|
221 |
\o
|
|
222 |
\snippet doc/src/snippets/transform/main.cpp 2
|
|
223 |
\endtable
|
|
224 |
|
|
225 |
\sa QPainter, {The Coordinate System}, {demos/affine}{Affine
|
|
226 |
Transformations Demo}, {Transformations Example}
|
|
227 |
*/
|
|
228 |
|
|
229 |
/*!
|
|
230 |
\enum QTransform::TransformationType
|
|
231 |
|
|
232 |
\value TxNone
|
|
233 |
\value TxTranslate
|
|
234 |
\value TxScale
|
|
235 |
\value TxRotate
|
|
236 |
\value TxShear
|
|
237 |
\value TxProject
|
|
238 |
*/
|
|
239 |
|
|
240 |
/*!
|
|
241 |
\fn QTransform::QTransform(Qt::Initialization)
|
|
242 |
\internal
|
|
243 |
*/
|
|
244 |
|
|
245 |
/*!
|
|
246 |
Constructs an identity matrix.
|
|
247 |
|
|
248 |
All elements are set to zero except \c m11 and \c m22 (specifying
|
|
249 |
the scale) and \c m13 which are set to 1.
|
|
250 |
|
|
251 |
\sa reset()
|
|
252 |
*/
|
|
253 |
QTransform::QTransform()
|
|
254 |
: affine(true)
|
|
255 |
, m_13(0), m_23(0), m_33(1)
|
|
256 |
, m_type(TxNone)
|
|
257 |
, m_dirty(TxNone)
|
|
258 |
{
|
|
259 |
}
|
|
260 |
|
|
261 |
/*!
|
|
262 |
\fn QTransform::QTransform(qreal m11, qreal m12, qreal m13, qreal m21, qreal m22, qreal m23, qreal m31, qreal m32, qreal m33)
|
|
263 |
|
|
264 |
Constructs a matrix with the elements, \a m11, \a m12, \a m13,
|
|
265 |
\a m21, \a m22, \a m23, \a m31, \a m32, \a m33.
|
|
266 |
|
|
267 |
\sa setMatrix()
|
|
268 |
*/
|
|
269 |
QTransform::QTransform(qreal h11, qreal h12, qreal h13,
|
|
270 |
qreal h21, qreal h22, qreal h23,
|
|
271 |
qreal h31, qreal h32, qreal h33)
|
|
272 |
: affine(h11, h12, h21, h22, h31, h32, true)
|
|
273 |
, m_13(h13), m_23(h23), m_33(h33)
|
|
274 |
, m_type(TxNone)
|
|
275 |
, m_dirty(TxProject)
|
|
276 |
{
|
|
277 |
}
|
|
278 |
|
|
279 |
/*!
|
|
280 |
\fn QTransform::QTransform(qreal m11, qreal m12, qreal m21, qreal m22, qreal dx, qreal dy)
|
|
281 |
|
|
282 |
Constructs a matrix with the elements, \a m11, \a m12, \a m21, \a m22, \a dx and \a dy.
|
|
283 |
|
|
284 |
\sa setMatrix()
|
|
285 |
*/
|
|
286 |
QTransform::QTransform(qreal h11, qreal h12, qreal h21,
|
|
287 |
qreal h22, qreal dx, qreal dy)
|
|
288 |
: affine(h11, h12, h21, h22, dx, dy, true)
|
|
289 |
, m_13(0), m_23(0), m_33(1)
|
|
290 |
, m_type(TxNone)
|
|
291 |
, m_dirty(TxShear)
|
|
292 |
{
|
|
293 |
}
|
|
294 |
|
|
295 |
/*!
|
|
296 |
\fn QTransform::QTransform(const QMatrix &matrix)
|
|
297 |
|
|
298 |
Constructs a matrix that is a copy of the given \a matrix.
|
|
299 |
Note that the \c m13, \c m23, and \c m33 elements are set to 0, 0,
|
|
300 |
and 1 respectively.
|
|
301 |
*/
|
|
302 |
QTransform::QTransform(const QMatrix &mtx)
|
|
303 |
: affine(mtx._m11, mtx._m12, mtx._m21, mtx._m22, mtx._dx, mtx._dy, true),
|
|
304 |
m_13(0), m_23(0), m_33(1)
|
|
305 |
, m_type(TxNone)
|
|
306 |
, m_dirty(TxShear)
|
|
307 |
{
|
|
308 |
}
|
|
309 |
|
|
310 |
/*!
|
|
311 |
Returns the adjoint of this matrix.
|
|
312 |
*/
|
|
313 |
QTransform QTransform::adjoint() const
|
|
314 |
{
|
|
315 |
qreal h11, h12, h13,
|
|
316 |
h21, h22, h23,
|
|
317 |
h31, h32, h33;
|
|
318 |
h11 = affine._m22*m_33 - m_23*affine._dy;
|
|
319 |
h21 = m_23*affine._dx - affine._m21*m_33;
|
|
320 |
h31 = affine._m21*affine._dy - affine._m22*affine._dx;
|
|
321 |
h12 = m_13*affine._dy - affine._m12*m_33;
|
|
322 |
h22 = affine._m11*m_33 - m_13*affine._dx;
|
|
323 |
h32 = affine._m12*affine._dx - affine._m11*affine._dy;
|
|
324 |
h13 = affine._m12*m_23 - m_13*affine._m22;
|
|
325 |
h23 = m_13*affine._m21 - affine._m11*m_23;
|
|
326 |
h33 = affine._m11*affine._m22 - affine._m12*affine._m21;
|
|
327 |
|
|
328 |
return QTransform(h11, h12, h13,
|
|
329 |
h21, h22, h23,
|
|
330 |
h31, h32, h33, true);
|
|
331 |
}
|
|
332 |
|
|
333 |
/*!
|
|
334 |
Returns the transpose of this matrix.
|
|
335 |
*/
|
|
336 |
QTransform QTransform::transposed() const
|
|
337 |
{
|
|
338 |
QTransform t(affine._m11, affine._m21, affine._dx,
|
|
339 |
affine._m12, affine._m22, affine._dy,
|
|
340 |
m_13, m_23, m_33, true);
|
|
341 |
t.m_type = m_type;
|
|
342 |
t.m_dirty = m_dirty;
|
|
343 |
return t;
|
|
344 |
}
|
|
345 |
|
|
346 |
/*!
|
|
347 |
Returns an inverted copy of this matrix.
|
|
348 |
|
|
349 |
If the matrix is singular (not invertible), the returned matrix is
|
|
350 |
the identity matrix. If \a invertible is valid (i.e. not 0), its
|
|
351 |
value is set to true if the matrix is invertible, otherwise it is
|
|
352 |
set to false.
|
|
353 |
|
|
354 |
\sa isInvertible()
|
|
355 |
*/
|
|
356 |
QTransform QTransform::inverted(bool *invertible) const
|
|
357 |
{
|
|
358 |
QTransform invert(true);
|
|
359 |
bool inv = true;
|
|
360 |
|
|
361 |
switch(inline_type()) {
|
|
362 |
case TxNone:
|
|
363 |
break;
|
|
364 |
case TxTranslate:
|
|
365 |
invert.affine._dx = -affine._dx;
|
|
366 |
invert.affine._dy = -affine._dy;
|
|
367 |
break;
|
|
368 |
case TxScale:
|
|
369 |
inv = !qFuzzyIsNull(affine._m11);
|
|
370 |
inv &= !qFuzzyIsNull(affine._m22);
|
|
371 |
if (inv) {
|
|
372 |
invert.affine._m11 = 1. / affine._m11;
|
|
373 |
invert.affine._m22 = 1. / affine._m22;
|
|
374 |
invert.affine._dx = -affine._dx * invert.affine._m11;
|
|
375 |
invert.affine._dy = -affine._dy * invert.affine._m22;
|
|
376 |
}
|
|
377 |
break;
|
|
378 |
case TxRotate:
|
|
379 |
case TxShear:
|
|
380 |
invert.affine = affine.inverted(&inv);
|
|
381 |
break;
|
|
382 |
default:
|
|
383 |
// general case
|
|
384 |
qreal det = determinant();
|
|
385 |
inv = !qFuzzyIsNull(det);
|
|
386 |
if (inv)
|
|
387 |
invert = adjoint() / det;
|
|
388 |
break;
|
|
389 |
}
|
|
390 |
|
|
391 |
if (invertible)
|
|
392 |
*invertible = inv;
|
|
393 |
|
|
394 |
if (inv) {
|
|
395 |
// inverting doesn't change the type
|
|
396 |
invert.m_type = m_type;
|
|
397 |
invert.m_dirty = m_dirty;
|
|
398 |
}
|
|
399 |
|
|
400 |
return invert;
|
|
401 |
}
|
|
402 |
|
|
403 |
/*!
|
|
404 |
Moves the coordinate system \a dx along the x axis and \a dy along
|
|
405 |
the y axis, and returns a reference to the matrix.
|
|
406 |
|
|
407 |
\sa setMatrix()
|
|
408 |
*/
|
|
409 |
QTransform &QTransform::translate(qreal dx, qreal dy)
|
|
410 |
{
|
|
411 |
if (dx == 0 && dy == 0)
|
|
412 |
return *this;
|
|
413 |
|
|
414 |
switch(inline_type()) {
|
|
415 |
case TxNone:
|
|
416 |
affine._dx = dx;
|
|
417 |
affine._dy = dy;
|
|
418 |
break;
|
|
419 |
case TxTranslate:
|
|
420 |
affine._dx += dx;
|
|
421 |
affine._dy += dy;
|
|
422 |
break;
|
|
423 |
case TxScale:
|
|
424 |
affine._dx += dx*affine._m11;
|
|
425 |
affine._dy += dy*affine._m22;
|
|
426 |
break;
|
|
427 |
case TxProject:
|
|
428 |
m_33 += dx*m_13 + dy*m_23;
|
|
429 |
// Fall through
|
|
430 |
case TxShear:
|
|
431 |
case TxRotate:
|
|
432 |
affine._dx += dx*affine._m11 + dy*affine._m21;
|
|
433 |
affine._dy += dy*affine._m22 + dx*affine._m12;
|
|
434 |
break;
|
|
435 |
}
|
|
436 |
if (m_dirty < TxTranslate)
|
|
437 |
m_dirty = TxTranslate;
|
|
438 |
return *this;
|
|
439 |
}
|
|
440 |
|
|
441 |
/*!
|
|
442 |
Creates a matrix which corresponds to a translation of \a dx along
|
|
443 |
the x axis and \a dy along the y axis. This is the same as
|
|
444 |
QTransform().translate(dx, dy) but slightly faster.
|
|
445 |
|
|
446 |
\since 4.5
|
|
447 |
*/
|
|
448 |
QTransform QTransform::fromTranslate(qreal dx, qreal dy)
|
|
449 |
{
|
|
450 |
QTransform transform(1, 0, 0, 0, 1, 0, dx, dy, 1, true);
|
|
451 |
if (dx == 0 && dy == 0)
|
|
452 |
transform.m_type = TxNone;
|
|
453 |
else
|
|
454 |
transform.m_type = TxTranslate;
|
|
455 |
transform.m_dirty = TxNone;
|
|
456 |
return transform;
|
|
457 |
}
|
|
458 |
|
|
459 |
/*!
|
|
460 |
Scales the coordinate system by \a sx horizontally and \a sy
|
|
461 |
vertically, and returns a reference to the matrix.
|
|
462 |
|
|
463 |
\sa setMatrix()
|
|
464 |
*/
|
|
465 |
QTransform & QTransform::scale(qreal sx, qreal sy)
|
|
466 |
{
|
|
467 |
if (sx == 1 && sy == 1)
|
|
468 |
return *this;
|
|
469 |
|
|
470 |
switch(inline_type()) {
|
|
471 |
case TxNone:
|
|
472 |
case TxTranslate:
|
|
473 |
affine._m11 = sx;
|
|
474 |
affine._m22 = sy;
|
|
475 |
break;
|
|
476 |
case TxProject:
|
|
477 |
m_13 *= sx;
|
|
478 |
m_23 *= sy;
|
|
479 |
// fall through
|
|
480 |
case TxRotate:
|
|
481 |
case TxShear:
|
|
482 |
affine._m12 *= sx;
|
|
483 |
affine._m21 *= sy;
|
|
484 |
// fall through
|
|
485 |
case TxScale:
|
|
486 |
affine._m11 *= sx;
|
|
487 |
affine._m22 *= sy;
|
|
488 |
break;
|
|
489 |
}
|
|
490 |
if (m_dirty < TxScale)
|
|
491 |
m_dirty = TxScale;
|
|
492 |
return *this;
|
|
493 |
}
|
|
494 |
|
|
495 |
/*!
|
|
496 |
Creates a matrix which corresponds to a scaling of
|
|
497 |
\a sx horizontally and \a sy vertically.
|
|
498 |
This is the same as QTransform().scale(sx, sy) but slightly faster.
|
|
499 |
|
|
500 |
\since 4.5
|
|
501 |
*/
|
|
502 |
QTransform QTransform::fromScale(qreal sx, qreal sy)
|
|
503 |
{
|
|
504 |
QTransform transform(sx, 0, 0, 0, sy, 0, 0, 0, 1, true);
|
|
505 |
if (sx == 1. && sy == 1.)
|
|
506 |
transform.m_type = TxNone;
|
|
507 |
else
|
|
508 |
transform.m_type = TxScale;
|
|
509 |
transform.m_dirty = TxNone;
|
|
510 |
return transform;
|
|
511 |
}
|
|
512 |
|
|
513 |
/*!
|
|
514 |
Shears the coordinate system by \a sh horizontally and \a sv
|
|
515 |
vertically, and returns a reference to the matrix.
|
|
516 |
|
|
517 |
\sa setMatrix()
|
|
518 |
*/
|
|
519 |
QTransform & QTransform::shear(qreal sh, qreal sv)
|
|
520 |
{
|
|
521 |
if (sh == 0 && sv == 0)
|
|
522 |
return *this;
|
|
523 |
|
|
524 |
switch(inline_type()) {
|
|
525 |
case TxNone:
|
|
526 |
case TxTranslate:
|
|
527 |
affine._m12 = sv;
|
|
528 |
affine._m21 = sh;
|
|
529 |
break;
|
|
530 |
case TxScale:
|
|
531 |
affine._m12 = sv*affine._m22;
|
|
532 |
affine._m21 = sh*affine._m11;
|
|
533 |
break;
|
|
534 |
case TxProject: {
|
|
535 |
qreal tm13 = sv*m_23;
|
|
536 |
qreal tm23 = sh*m_13;
|
|
537 |
m_13 += tm13;
|
|
538 |
m_23 += tm23;
|
|
539 |
}
|
|
540 |
// fall through
|
|
541 |
case TxRotate:
|
|
542 |
case TxShear: {
|
|
543 |
qreal tm11 = sv*affine._m21;
|
|
544 |
qreal tm22 = sh*affine._m12;
|
|
545 |
qreal tm12 = sv*affine._m22;
|
|
546 |
qreal tm21 = sh*affine._m11;
|
|
547 |
affine._m11 += tm11; affine._m12 += tm12;
|
|
548 |
affine._m21 += tm21; affine._m22 += tm22;
|
|
549 |
break;
|
|
550 |
}
|
|
551 |
}
|
|
552 |
if (m_dirty < TxShear)
|
|
553 |
m_dirty = TxShear;
|
|
554 |
return *this;
|
|
555 |
}
|
|
556 |
|
|
557 |
const qreal deg2rad = qreal(0.017453292519943295769); // pi/180
|
|
558 |
const qreal inv_dist_to_plane = 1. / 1024.;
|
|
559 |
|
|
560 |
/*!
|
|
561 |
\fn QTransform &QTransform::rotate(qreal angle, Qt::Axis axis)
|
|
562 |
|
|
563 |
Rotates the coordinate system counterclockwise by the given \a angle
|
|
564 |
about the specified \a axis and returns a reference to the matrix.
|
|
565 |
|
|
566 |
Note that if you apply a QTransform to a point defined in widget
|
|
567 |
coordinates, the direction of the rotation will be clockwise
|
|
568 |
because the y-axis points downwards.
|
|
569 |
|
|
570 |
The angle is specified in degrees.
|
|
571 |
|
|
572 |
\sa setMatrix()
|
|
573 |
*/
|
|
574 |
QTransform & QTransform::rotate(qreal a, Qt::Axis axis)
|
|
575 |
{
|
|
576 |
if (a == 0)
|
|
577 |
return *this;
|
|
578 |
|
|
579 |
qreal sina = 0;
|
|
580 |
qreal cosa = 0;
|
|
581 |
if (a == 90. || a == -270.)
|
|
582 |
sina = 1.;
|
|
583 |
else if (a == 270. || a == -90.)
|
|
584 |
sina = -1.;
|
|
585 |
else if (a == 180.)
|
|
586 |
cosa = -1.;
|
|
587 |
else{
|
|
588 |
qreal b = deg2rad*a; // convert to radians
|
|
589 |
sina = qSin(b); // fast and convenient
|
|
590 |
cosa = qCos(b);
|
|
591 |
}
|
|
592 |
|
|
593 |
if (axis == Qt::ZAxis) {
|
|
594 |
switch(inline_type()) {
|
|
595 |
case TxNone:
|
|
596 |
case TxTranslate:
|
|
597 |
affine._m11 = cosa;
|
|
598 |
affine._m12 = sina;
|
|
599 |
affine._m21 = -sina;
|
|
600 |
affine._m22 = cosa;
|
|
601 |
break;
|
|
602 |
case TxScale: {
|
|
603 |
qreal tm11 = cosa*affine._m11;
|
|
604 |
qreal tm12 = sina*affine._m22;
|
|
605 |
qreal tm21 = -sina*affine._m11;
|
|
606 |
qreal tm22 = cosa*affine._m22;
|
|
607 |
affine._m11 = tm11; affine._m12 = tm12;
|
|
608 |
affine._m21 = tm21; affine._m22 = tm22;
|
|
609 |
break;
|
|
610 |
}
|
|
611 |
case TxProject: {
|
|
612 |
qreal tm13 = cosa*m_13 + sina*m_23;
|
|
613 |
qreal tm23 = -sina*m_13 + cosa*m_23;
|
|
614 |
m_13 = tm13;
|
|
615 |
m_23 = tm23;
|
|
616 |
// fall through
|
|
617 |
}
|
|
618 |
case TxRotate:
|
|
619 |
case TxShear: {
|
|
620 |
qreal tm11 = cosa*affine._m11 + sina*affine._m21;
|
|
621 |
qreal tm12 = cosa*affine._m12 + sina*affine._m22;
|
|
622 |
qreal tm21 = -sina*affine._m11 + cosa*affine._m21;
|
|
623 |
qreal tm22 = -sina*affine._m12 + cosa*affine._m22;
|
|
624 |
affine._m11 = tm11; affine._m12 = tm12;
|
|
625 |
affine._m21 = tm21; affine._m22 = tm22;
|
|
626 |
break;
|
|
627 |
}
|
|
628 |
}
|
|
629 |
if (m_dirty < TxRotate)
|
|
630 |
m_dirty = TxRotate;
|
|
631 |
} else {
|
|
632 |
QTransform result;
|
|
633 |
if (axis == Qt::YAxis) {
|
|
634 |
result.affine._m11 = cosa;
|
|
635 |
result.m_13 = -sina * inv_dist_to_plane;
|
|
636 |
} else {
|
|
637 |
result.affine._m22 = cosa;
|
|
638 |
result.m_23 = -sina * inv_dist_to_plane;
|
|
639 |
}
|
|
640 |
result.m_type = TxProject;
|
|
641 |
*this = result * *this;
|
|
642 |
}
|
|
643 |
|
|
644 |
return *this;
|
|
645 |
}
|
|
646 |
|
|
647 |
/*!
|
|
648 |
\fn QTransform & QTransform::rotateRadians(qreal angle, Qt::Axis axis)
|
|
649 |
|
|
650 |
Rotates the coordinate system counterclockwise by the given \a angle
|
|
651 |
about the specified \a axis and returns a reference to the matrix.
|
|
652 |
|
|
653 |
Note that if you apply a QTransform to a point defined in widget
|
|
654 |
coordinates, the direction of the rotation will be clockwise
|
|
655 |
because the y-axis points downwards.
|
|
656 |
|
|
657 |
The angle is specified in radians.
|
|
658 |
|
|
659 |
\sa setMatrix()
|
|
660 |
*/
|
|
661 |
QTransform & QTransform::rotateRadians(qreal a, Qt::Axis axis)
|
|
662 |
{
|
|
663 |
qreal sina = qSin(a);
|
|
664 |
qreal cosa = qCos(a);
|
|
665 |
|
|
666 |
if (axis == Qt::ZAxis) {
|
|
667 |
switch(inline_type()) {
|
|
668 |
case TxNone:
|
|
669 |
case TxTranslate:
|
|
670 |
affine._m11 = cosa;
|
|
671 |
affine._m12 = sina;
|
|
672 |
affine._m21 = -sina;
|
|
673 |
affine._m22 = cosa;
|
|
674 |
break;
|
|
675 |
case TxScale: {
|
|
676 |
qreal tm11 = cosa*affine._m11;
|
|
677 |
qreal tm12 = sina*affine._m22;
|
|
678 |
qreal tm21 = -sina*affine._m11;
|
|
679 |
qreal tm22 = cosa*affine._m22;
|
|
680 |
affine._m11 = tm11; affine._m12 = tm12;
|
|
681 |
affine._m21 = tm21; affine._m22 = tm22;
|
|
682 |
break;
|
|
683 |
}
|
|
684 |
case TxProject: {
|
|
685 |
qreal tm13 = cosa*m_13 + sina*m_23;
|
|
686 |
qreal tm23 = -sina*m_13 + cosa*m_23;
|
|
687 |
m_13 = tm13;
|
|
688 |
m_23 = tm23;
|
|
689 |
// fall through
|
|
690 |
}
|
|
691 |
case TxRotate:
|
|
692 |
case TxShear: {
|
|
693 |
qreal tm11 = cosa*affine._m11 + sina*affine._m21;
|
|
694 |
qreal tm12 = cosa*affine._m12 + sina*affine._m22;
|
|
695 |
qreal tm21 = -sina*affine._m11 + cosa*affine._m21;
|
|
696 |
qreal tm22 = -sina*affine._m12 + cosa*affine._m22;
|
|
697 |
affine._m11 = tm11; affine._m12 = tm12;
|
|
698 |
affine._m21 = tm21; affine._m22 = tm22;
|
|
699 |
break;
|
|
700 |
}
|
|
701 |
}
|
|
702 |
if (m_dirty < TxRotate)
|
|
703 |
m_dirty = TxRotate;
|
|
704 |
} else {
|
|
705 |
QTransform result;
|
|
706 |
if (axis == Qt::YAxis) {
|
|
707 |
result.affine._m11 = cosa;
|
|
708 |
result.m_13 = -sina * inv_dist_to_plane;
|
|
709 |
} else {
|
|
710 |
result.affine._m22 = cosa;
|
|
711 |
result.m_23 = -sina * inv_dist_to_plane;
|
|
712 |
}
|
|
713 |
result.m_type = TxProject;
|
|
714 |
*this = result * *this;
|
|
715 |
}
|
|
716 |
return *this;
|
|
717 |
}
|
|
718 |
|
|
719 |
/*!
|
|
720 |
\fn bool QTransform::operator==(const QTransform &matrix) const
|
|
721 |
Returns true if this matrix is equal to the given \a matrix,
|
|
722 |
otherwise returns false.
|
|
723 |
*/
|
|
724 |
bool QTransform::operator==(const QTransform &o) const
|
|
725 |
{
|
|
726 |
return affine._m11 == o.affine._m11 &&
|
|
727 |
affine._m12 == o.affine._m12 &&
|
|
728 |
affine._m21 == o.affine._m21 &&
|
|
729 |
affine._m22 == o.affine._m22 &&
|
|
730 |
affine._dx == o.affine._dx &&
|
|
731 |
affine._dy == o.affine._dy &&
|
|
732 |
m_13 == o.m_13 &&
|
|
733 |
m_23 == o.m_23 &&
|
|
734 |
m_33 == o.m_33;
|
|
735 |
}
|
|
736 |
|
|
737 |
/*!
|
|
738 |
\fn bool QTransform::operator!=(const QTransform &matrix) const
|
|
739 |
Returns true if this matrix is not equal to the given \a matrix,
|
|
740 |
otherwise returns false.
|
|
741 |
*/
|
|
742 |
bool QTransform::operator!=(const QTransform &o) const
|
|
743 |
{
|
|
744 |
return !operator==(o);
|
|
745 |
}
|
|
746 |
|
|
747 |
/*!
|
|
748 |
\fn QTransform & QTransform::operator*=(const QTransform &matrix)
|
|
749 |
\overload
|
|
750 |
|
|
751 |
Returns the result of multiplying this matrix by the given \a
|
|
752 |
matrix.
|
|
753 |
*/
|
|
754 |
QTransform & QTransform::operator*=(const QTransform &o)
|
|
755 |
{
|
|
756 |
const TransformationType otherType = o.inline_type();
|
|
757 |
if (otherType == TxNone)
|
|
758 |
return *this;
|
|
759 |
|
|
760 |
const TransformationType thisType = inline_type();
|
|
761 |
if (thisType == TxNone)
|
|
762 |
return operator=(o);
|
|
763 |
|
|
764 |
TransformationType t = qMax(thisType, otherType);
|
|
765 |
switch(t) {
|
|
766 |
case TxNone:
|
|
767 |
break;
|
|
768 |
case TxTranslate:
|
|
769 |
affine._dx += o.affine._dx;
|
|
770 |
affine._dy += o.affine._dy;
|
|
771 |
break;
|
|
772 |
case TxScale:
|
|
773 |
{
|
|
774 |
qreal m11 = affine._m11*o.affine._m11;
|
|
775 |
qreal m22 = affine._m22*o.affine._m22;
|
|
776 |
|
|
777 |
qreal m31 = affine._dx*o.affine._m11 + o.affine._dx;
|
|
778 |
qreal m32 = affine._dy*o.affine._m22 + o.affine._dy;
|
|
779 |
|
|
780 |
affine._m11 = m11;
|
|
781 |
affine._m22 = m22;
|
|
782 |
affine._dx = m31; affine._dy = m32;
|
|
783 |
break;
|
|
784 |
}
|
|
785 |
case TxRotate:
|
|
786 |
case TxShear:
|
|
787 |
{
|
|
788 |
qreal m11 = affine._m11*o.affine._m11 + affine._m12*o.affine._m21;
|
|
789 |
qreal m12 = affine._m11*o.affine._m12 + affine._m12*o.affine._m22;
|
|
790 |
|
|
791 |
qreal m21 = affine._m21*o.affine._m11 + affine._m22*o.affine._m21;
|
|
792 |
qreal m22 = affine._m21*o.affine._m12 + affine._m22*o.affine._m22;
|
|
793 |
|
|
794 |
qreal m31 = affine._dx*o.affine._m11 + affine._dy*o.affine._m21 + o.affine._dx;
|
|
795 |
qreal m32 = affine._dx*o.affine._m12 + affine._dy*o.affine._m22 + o.affine._dy;
|
|
796 |
|
|
797 |
affine._m11 = m11; affine._m12 = m12;
|
|
798 |
affine._m21 = m21; affine._m22 = m22;
|
|
799 |
affine._dx = m31; affine._dy = m32;
|
|
800 |
break;
|
|
801 |
}
|
|
802 |
case TxProject:
|
|
803 |
{
|
|
804 |
qreal m11 = affine._m11*o.affine._m11 + affine._m12*o.affine._m21 + m_13*o.affine._dx;
|
|
805 |
qreal m12 = affine._m11*o.affine._m12 + affine._m12*o.affine._m22 + m_13*o.affine._dy;
|
|
806 |
qreal m13 = affine._m11*o.m_13 + affine._m12*o.m_23 + m_13*o.m_33;
|
|
807 |
|
|
808 |
qreal m21 = affine._m21*o.affine._m11 + affine._m22*o.affine._m21 + m_23*o.affine._dx;
|
|
809 |
qreal m22 = affine._m21*o.affine._m12 + affine._m22*o.affine._m22 + m_23*o.affine._dy;
|
|
810 |
qreal m23 = affine._m21*o.m_13 + affine._m22*o.m_23 + m_23*o.m_33;
|
|
811 |
|
|
812 |
qreal m31 = affine._dx*o.affine._m11 + affine._dy*o.affine._m21 + m_33*o.affine._dx;
|
|
813 |
qreal m32 = affine._dx*o.affine._m12 + affine._dy*o.affine._m22 + m_33*o.affine._dy;
|
|
814 |
qreal m33 = affine._dx*o.m_13 + affine._dy*o.m_23 + m_33*o.m_33;
|
|
815 |
|
|
816 |
affine._m11 = m11; affine._m12 = m12; m_13 = m13;
|
|
817 |
affine._m21 = m21; affine._m22 = m22; m_23 = m23;
|
|
818 |
affine._dx = m31; affine._dy = m32; m_33 = m33;
|
|
819 |
}
|
|
820 |
}
|
|
821 |
|
|
822 |
m_dirty = t;
|
|
823 |
m_type = t;
|
|
824 |
|
|
825 |
return *this;
|
|
826 |
}
|
|
827 |
|
|
828 |
/*!
|
|
829 |
\fn QTransform QTransform::operator*(const QTransform &matrix) const
|
|
830 |
Returns the result of multiplying this matrix by the given \a
|
|
831 |
matrix.
|
|
832 |
|
|
833 |
Note that matrix multiplication is not commutative, i.e. a*b !=
|
|
834 |
b*a.
|
|
835 |
*/
|
|
836 |
QTransform QTransform::operator*(const QTransform &m) const
|
|
837 |
{
|
|
838 |
const TransformationType otherType = m.inline_type();
|
|
839 |
if (otherType == TxNone)
|
|
840 |
return *this;
|
|
841 |
|
|
842 |
const TransformationType thisType = inline_type();
|
|
843 |
if (thisType == TxNone)
|
|
844 |
return m;
|
|
845 |
|
|
846 |
QTransform t(true);
|
|
847 |
TransformationType type = qMax(thisType, otherType);
|
|
848 |
switch(type) {
|
|
849 |
case TxNone:
|
|
850 |
break;
|
|
851 |
case TxTranslate:
|
|
852 |
t.affine._dx = affine._dx + m.affine._dx;
|
|
853 |
t.affine._dy += affine._dy + m.affine._dy;
|
|
854 |
break;
|
|
855 |
case TxScale:
|
|
856 |
{
|
|
857 |
qreal m11 = affine._m11*m.affine._m11;
|
|
858 |
qreal m22 = affine._m22*m.affine._m22;
|
|
859 |
|
|
860 |
qreal m31 = affine._dx*m.affine._m11 + m.affine._dx;
|
|
861 |
qreal m32 = affine._dy*m.affine._m22 + m.affine._dy;
|
|
862 |
|
|
863 |
t.affine._m11 = m11;
|
|
864 |
t.affine._m22 = m22;
|
|
865 |
t.affine._dx = m31; t.affine._dy = m32;
|
|
866 |
break;
|
|
867 |
}
|
|
868 |
case TxRotate:
|
|
869 |
case TxShear:
|
|
870 |
{
|
|
871 |
qreal m11 = affine._m11*m.affine._m11 + affine._m12*m.affine._m21;
|
|
872 |
qreal m12 = affine._m11*m.affine._m12 + affine._m12*m.affine._m22;
|
|
873 |
|
|
874 |
qreal m21 = affine._m21*m.affine._m11 + affine._m22*m.affine._m21;
|
|
875 |
qreal m22 = affine._m21*m.affine._m12 + affine._m22*m.affine._m22;
|
|
876 |
|
|
877 |
qreal m31 = affine._dx*m.affine._m11 + affine._dy*m.affine._m21 + m.affine._dx;
|
|
878 |
qreal m32 = affine._dx*m.affine._m12 + affine._dy*m.affine._m22 + m.affine._dy;
|
|
879 |
|
|
880 |
t.affine._m11 = m11; t.affine._m12 = m12;
|
|
881 |
t.affine._m21 = m21; t.affine._m22 = m22;
|
|
882 |
t.affine._dx = m31; t.affine._dy = m32;
|
|
883 |
break;
|
|
884 |
}
|
|
885 |
case TxProject:
|
|
886 |
{
|
|
887 |
qreal m11 = affine._m11*m.affine._m11 + affine._m12*m.affine._m21 + m_13*m.affine._dx;
|
|
888 |
qreal m12 = affine._m11*m.affine._m12 + affine._m12*m.affine._m22 + m_13*m.affine._dy;
|
|
889 |
qreal m13 = affine._m11*m.m_13 + affine._m12*m.m_23 + m_13*m.m_33;
|
|
890 |
|
|
891 |
qreal m21 = affine._m21*m.affine._m11 + affine._m22*m.affine._m21 + m_23*m.affine._dx;
|
|
892 |
qreal m22 = affine._m21*m.affine._m12 + affine._m22*m.affine._m22 + m_23*m.affine._dy;
|
|
893 |
qreal m23 = affine._m21*m.m_13 + affine._m22*m.m_23 + m_23*m.m_33;
|
|
894 |
|
|
895 |
qreal m31 = affine._dx*m.affine._m11 + affine._dy*m.affine._m21 + m_33*m.affine._dx;
|
|
896 |
qreal m32 = affine._dx*m.affine._m12 + affine._dy*m.affine._m22 + m_33*m.affine._dy;
|
|
897 |
qreal m33 = affine._dx*m.m_13 + affine._dy*m.m_23 + m_33*m.m_33;
|
|
898 |
|
|
899 |
t.affine._m11 = m11; t.affine._m12 = m12; t.m_13 = m13;
|
|
900 |
t.affine._m21 = m21; t.affine._m22 = m22; t.m_23 = m23;
|
|
901 |
t.affine._dx = m31; t.affine._dy = m32; t.m_33 = m33;
|
|
902 |
}
|
|
903 |
}
|
|
904 |
|
|
905 |
t.m_dirty = type;
|
|
906 |
t.m_type = type;
|
|
907 |
|
|
908 |
return t;
|
|
909 |
}
|
|
910 |
|
|
911 |
/*!
|
|
912 |
\fn QTransform & QTransform::operator*=(qreal scalar)
|
|
913 |
\overload
|
|
914 |
|
|
915 |
Returns the result of performing an element-wise multiplication of this
|
|
916 |
matrix with the given \a scalar.
|
|
917 |
*/
|
|
918 |
|
|
919 |
/*!
|
|
920 |
\fn QTransform & QTransform::operator/=(qreal scalar)
|
|
921 |
\overload
|
|
922 |
|
|
923 |
Returns the result of performing an element-wise division of this
|
|
924 |
matrix by the given \a scalar.
|
|
925 |
*/
|
|
926 |
|
|
927 |
/*!
|
|
928 |
\fn QTransform & QTransform::operator+=(qreal scalar)
|
|
929 |
\overload
|
|
930 |
|
|
931 |
Returns the matrix obtained by adding the given \a scalar to each
|
|
932 |
element of this matrix.
|
|
933 |
*/
|
|
934 |
|
|
935 |
/*!
|
|
936 |
\fn QTransform & QTransform::operator-=(qreal scalar)
|
|
937 |
\overload
|
|
938 |
|
|
939 |
Returns the matrix obtained by subtracting the given \a scalar from each
|
|
940 |
element of this matrix.
|
|
941 |
*/
|
|
942 |
|
|
943 |
/*!
|
|
944 |
Assigns the given \a matrix's values to this matrix.
|
|
945 |
*/
|
|
946 |
QTransform & QTransform::operator=(const QTransform &matrix)
|
|
947 |
{
|
|
948 |
affine._m11 = matrix.affine._m11;
|
|
949 |
affine._m12 = matrix.affine._m12;
|
|
950 |
affine._m21 = matrix.affine._m21;
|
|
951 |
affine._m22 = matrix.affine._m22;
|
|
952 |
affine._dx = matrix.affine._dx;
|
|
953 |
affine._dy = matrix.affine._dy;
|
|
954 |
m_13 = matrix.m_13;
|
|
955 |
m_23 = matrix.m_23;
|
|
956 |
m_33 = matrix.m_33;
|
|
957 |
m_type = matrix.m_type;
|
|
958 |
m_dirty = matrix.m_dirty;
|
|
959 |
|
|
960 |
return *this;
|
|
961 |
}
|
|
962 |
|
|
963 |
/*!
|
|
964 |
Resets the matrix to an identity matrix, i.e. all elements are set
|
|
965 |
to zero, except \c m11 and \c m22 (specifying the scale) and \c m33
|
|
966 |
which are set to 1.
|
|
967 |
|
|
968 |
\sa QTransform(), isIdentity(), {QTransform#Basic Matrix
|
|
969 |
Operations}{Basic Matrix Operations}
|
|
970 |
*/
|
|
971 |
void QTransform::reset()
|
|
972 |
{
|
|
973 |
affine._m11 = affine._m22 = m_33 = 1.0;
|
|
974 |
affine._m12 = m_13 = affine._m21 = m_23 = affine._dx = affine._dy = 0;
|
|
975 |
m_type = TxNone;
|
|
976 |
m_dirty = TxNone;
|
|
977 |
}
|
|
978 |
|
|
979 |
#ifndef QT_NO_DATASTREAM
|
|
980 |
/*!
|
|
981 |
\fn QDataStream &operator<<(QDataStream &stream, const QTransform &matrix)
|
|
982 |
\since 4.3
|
|
983 |
\relates QTransform
|
|
984 |
|
|
985 |
Writes the given \a matrix to the given \a stream and returns a
|
|
986 |
reference to the stream.
|
|
987 |
|
|
988 |
\sa {Format of the QDataStream Operators}
|
|
989 |
*/
|
|
990 |
QDataStream & operator<<(QDataStream &s, const QTransform &m)
|
|
991 |
{
|
|
992 |
s << double(m.m11())
|
|
993 |
<< double(m.m12())
|
|
994 |
<< double(m.m13())
|
|
995 |
<< double(m.m21())
|
|
996 |
<< double(m.m22())
|
|
997 |
<< double(m.m23())
|
|
998 |
<< double(m.m31())
|
|
999 |
<< double(m.m32())
|
|
1000 |
<< double(m.m33());
|
|
1001 |
return s;
|
|
1002 |
}
|
|
1003 |
|
|
1004 |
/*!
|
|
1005 |
\fn QDataStream &operator>>(QDataStream &stream, QTransform &matrix)
|
|
1006 |
\since 4.3
|
|
1007 |
\relates QTransform
|
|
1008 |
|
|
1009 |
Reads the given \a matrix from the given \a stream and returns a
|
|
1010 |
reference to the stream.
|
|
1011 |
|
|
1012 |
\sa {Format of the QDataStream Operators}
|
|
1013 |
*/
|
|
1014 |
QDataStream & operator>>(QDataStream &s, QTransform &t)
|
|
1015 |
{
|
|
1016 |
double m11, m12, m13,
|
|
1017 |
m21, m22, m23,
|
|
1018 |
m31, m32, m33;
|
|
1019 |
|
|
1020 |
s >> m11;
|
|
1021 |
s >> m12;
|
|
1022 |
s >> m13;
|
|
1023 |
s >> m21;
|
|
1024 |
s >> m22;
|
|
1025 |
s >> m23;
|
|
1026 |
s >> m31;
|
|
1027 |
s >> m32;
|
|
1028 |
s >> m33;
|
|
1029 |
t.setMatrix(m11, m12, m13,
|
|
1030 |
m21, m22, m23,
|
|
1031 |
m31, m32, m33);
|
|
1032 |
return s;
|
|
1033 |
}
|
|
1034 |
|
|
1035 |
#endif // QT_NO_DATASTREAM
|
|
1036 |
|
|
1037 |
#ifndef QT_NO_DEBUG_STREAM
|
|
1038 |
QDebug operator<<(QDebug dbg, const QTransform &m)
|
|
1039 |
{
|
|
1040 |
dbg.nospace() << "QTransform("
|
|
1041 |
<< "11=" << m.m11()
|
|
1042 |
<< " 12=" << m.m12()
|
|
1043 |
<< " 13=" << m.m13()
|
|
1044 |
<< " 21=" << m.m21()
|
|
1045 |
<< " 22=" << m.m22()
|
|
1046 |
<< " 23=" << m.m23()
|
|
1047 |
<< " 31=" << m.m31()
|
|
1048 |
<< " 32=" << m.m32()
|
|
1049 |
<< " 33=" << m.m33()
|
|
1050 |
<< ')';
|
|
1051 |
return dbg.space();
|
|
1052 |
}
|
|
1053 |
#endif
|
|
1054 |
|
|
1055 |
/*!
|
|
1056 |
\fn QPoint operator*(const QPoint &point, const QTransform &matrix)
|
|
1057 |
\relates QTransform
|
|
1058 |
|
|
1059 |
This is the same as \a{matrix}.map(\a{point}).
|
|
1060 |
|
|
1061 |
\sa QTransform::map()
|
|
1062 |
*/
|
|
1063 |
QPoint QTransform::map(const QPoint &p) const
|
|
1064 |
{
|
|
1065 |
qreal fx = p.x();
|
|
1066 |
qreal fy = p.y();
|
|
1067 |
|
|
1068 |
qreal x = 0, y = 0;
|
|
1069 |
|
|
1070 |
TransformationType t = inline_type();
|
|
1071 |
switch(t) {
|
|
1072 |
case TxNone:
|
|
1073 |
x = fx;
|
|
1074 |
y = fy;
|
|
1075 |
break;
|
|
1076 |
case TxTranslate:
|
|
1077 |
x = fx + affine._dx;
|
|
1078 |
y = fy + affine._dy;
|
|
1079 |
break;
|
|
1080 |
case TxScale:
|
|
1081 |
x = affine._m11 * fx + affine._dx;
|
|
1082 |
y = affine._m22 * fy + affine._dy;
|
|
1083 |
break;
|
|
1084 |
case TxRotate:
|
|
1085 |
case TxShear:
|
|
1086 |
case TxProject:
|
|
1087 |
x = affine._m11 * fx + affine._m21 * fy + affine._dx;
|
|
1088 |
y = affine._m12 * fx + affine._m22 * fy + affine._dy;
|
|
1089 |
if (t == TxProject) {
|
|
1090 |
qreal w = 1./(m_13 * fx + m_23 * fy + m_33);
|
|
1091 |
x *= w;
|
|
1092 |
y *= w;
|
|
1093 |
}
|
|
1094 |
}
|
|
1095 |
return QPoint(qRound(x), qRound(y));
|
|
1096 |
}
|
|
1097 |
|
|
1098 |
|
|
1099 |
/*!
|
|
1100 |
\fn QPointF operator*(const QPointF &point, const QTransform &matrix)
|
|
1101 |
\relates QTransform
|
|
1102 |
|
|
1103 |
Same as \a{matrix}.map(\a{point}).
|
|
1104 |
|
|
1105 |
\sa QTransform::map()
|
|
1106 |
*/
|
|
1107 |
|
|
1108 |
/*!
|
|
1109 |
\overload
|
|
1110 |
|
|
1111 |
Creates and returns a QPointF object that is a copy of the given point,
|
|
1112 |
\a p, mapped into the coordinate system defined by this matrix.
|
|
1113 |
*/
|
|
1114 |
QPointF QTransform::map(const QPointF &p) const
|
|
1115 |
{
|
|
1116 |
qreal fx = p.x();
|
|
1117 |
qreal fy = p.y();
|
|
1118 |
|
|
1119 |
qreal x = 0, y = 0;
|
|
1120 |
|
|
1121 |
TransformationType t = inline_type();
|
|
1122 |
switch(t) {
|
|
1123 |
case TxNone:
|
|
1124 |
x = fx;
|
|
1125 |
y = fy;
|
|
1126 |
break;
|
|
1127 |
case TxTranslate:
|
|
1128 |
x = fx + affine._dx;
|
|
1129 |
y = fy + affine._dy;
|
|
1130 |
break;
|
|
1131 |
case TxScale:
|
|
1132 |
x = affine._m11 * fx + affine._dx;
|
|
1133 |
y = affine._m22 * fy + affine._dy;
|
|
1134 |
break;
|
|
1135 |
case TxRotate:
|
|
1136 |
case TxShear:
|
|
1137 |
case TxProject:
|
|
1138 |
x = affine._m11 * fx + affine._m21 * fy + affine._dx;
|
|
1139 |
y = affine._m12 * fx + affine._m22 * fy + affine._dy;
|
|
1140 |
if (t == TxProject) {
|
|
1141 |
qreal w = 1./(m_13 * fx + m_23 * fy + m_33);
|
|
1142 |
x *= w;
|
|
1143 |
y *= w;
|
|
1144 |
}
|
|
1145 |
}
|
|
1146 |
return QPointF(x, y);
|
|
1147 |
}
|
|
1148 |
|
|
1149 |
/*!
|
|
1150 |
\fn QPoint QTransform::map(const QPoint &point) const
|
|
1151 |
\overload
|
|
1152 |
|
|
1153 |
Creates and returns a QPoint object that is a copy of the given \a
|
|
1154 |
point, mapped into the coordinate system defined by this
|
|
1155 |
matrix. Note that the transformed coordinates are rounded to the
|
|
1156 |
nearest integer.
|
|
1157 |
*/
|
|
1158 |
|
|
1159 |
/*!
|
|
1160 |
\fn QLineF operator*(const QLineF &line, const QTransform &matrix)
|
|
1161 |
\relates QTransform
|
|
1162 |
|
|
1163 |
This is the same as \a{matrix}.map(\a{line}).
|
|
1164 |
|
|
1165 |
\sa QTransform::map()
|
|
1166 |
*/
|
|
1167 |
|
|
1168 |
/*!
|
|
1169 |
\fn QLine operator*(const QLine &line, const QTransform &matrix)
|
|
1170 |
\relates QTransform
|
|
1171 |
|
|
1172 |
This is the same as \a{matrix}.map(\a{line}).
|
|
1173 |
|
|
1174 |
\sa QTransform::map()
|
|
1175 |
*/
|
|
1176 |
|
|
1177 |
/*!
|
|
1178 |
\overload
|
|
1179 |
|
|
1180 |
Creates and returns a QLineF object that is a copy of the given line,
|
|
1181 |
\a l, mapped into the coordinate system defined by this matrix.
|
|
1182 |
*/
|
|
1183 |
QLine QTransform::map(const QLine &l) const
|
|
1184 |
{
|
|
1185 |
qreal fx1 = l.x1();
|
|
1186 |
qreal fy1 = l.y1();
|
|
1187 |
qreal fx2 = l.x2();
|
|
1188 |
qreal fy2 = l.y2();
|
|
1189 |
|
|
1190 |
qreal x1 = 0, y1 = 0, x2 = 0, y2 = 0;
|
|
1191 |
|
|
1192 |
TransformationType t = inline_type();
|
|
1193 |
switch(t) {
|
|
1194 |
case TxNone:
|
|
1195 |
x1 = fx1;
|
|
1196 |
y1 = fy1;
|
|
1197 |
x2 = fx2;
|
|
1198 |
y2 = fy2;
|
|
1199 |
break;
|
|
1200 |
case TxTranslate:
|
|
1201 |
x1 = fx1 + affine._dx;
|
|
1202 |
y1 = fy1 + affine._dy;
|
|
1203 |
x2 = fx2 + affine._dx;
|
|
1204 |
y2 = fy2 + affine._dy;
|
|
1205 |
break;
|
|
1206 |
case TxScale:
|
|
1207 |
x1 = affine._m11 * fx1 + affine._dx;
|
|
1208 |
y1 = affine._m22 * fy1 + affine._dy;
|
|
1209 |
x2 = affine._m11 * fx2 + affine._dx;
|
|
1210 |
y2 = affine._m22 * fy2 + affine._dy;
|
|
1211 |
break;
|
|
1212 |
case TxRotate:
|
|
1213 |
case TxShear:
|
|
1214 |
case TxProject:
|
|
1215 |
x1 = affine._m11 * fx1 + affine._m21 * fy1 + affine._dx;
|
|
1216 |
y1 = affine._m12 * fx1 + affine._m22 * fy1 + affine._dy;
|
|
1217 |
x2 = affine._m11 * fx2 + affine._m21 * fy2 + affine._dx;
|
|
1218 |
y2 = affine._m12 * fx2 + affine._m22 * fy2 + affine._dy;
|
|
1219 |
if (t == TxProject) {
|
|
1220 |
qreal w = 1./(m_13 * fx1 + m_23 * fy1 + m_33);
|
|
1221 |
x1 *= w;
|
|
1222 |
y1 *= w;
|
|
1223 |
w = 1./(m_13 * fx2 + m_23 * fy2 + m_33);
|
|
1224 |
x2 *= w;
|
|
1225 |
y2 *= w;
|
|
1226 |
}
|
|
1227 |
}
|
|
1228 |
return QLine(qRound(x1), qRound(y1), qRound(x2), qRound(y2));
|
|
1229 |
}
|
|
1230 |
|
|
1231 |
/*!
|
|
1232 |
\overload
|
|
1233 |
|
|
1234 |
\fn QLineF QTransform::map(const QLineF &line) const
|
|
1235 |
|
|
1236 |
Creates and returns a QLine object that is a copy of the given \a
|
|
1237 |
line, mapped into the coordinate system defined by this matrix.
|
|
1238 |
Note that the transformed coordinates are rounded to the nearest
|
|
1239 |
integer.
|
|
1240 |
*/
|
|
1241 |
|
|
1242 |
QLineF QTransform::map(const QLineF &l) const
|
|
1243 |
{
|
|
1244 |
qreal fx1 = l.x1();
|
|
1245 |
qreal fy1 = l.y1();
|
|
1246 |
qreal fx2 = l.x2();
|
|
1247 |
qreal fy2 = l.y2();
|
|
1248 |
|
|
1249 |
qreal x1 = 0, y1 = 0, x2 = 0, y2 = 0;
|
|
1250 |
|
|
1251 |
TransformationType t = inline_type();
|
|
1252 |
switch(t) {
|
|
1253 |
case TxNone:
|
|
1254 |
x1 = fx1;
|
|
1255 |
y1 = fy1;
|
|
1256 |
x2 = fx2;
|
|
1257 |
y2 = fy2;
|
|
1258 |
break;
|
|
1259 |
case TxTranslate:
|
|
1260 |
x1 = fx1 + affine._dx;
|
|
1261 |
y1 = fy1 + affine._dy;
|
|
1262 |
x2 = fx2 + affine._dx;
|
|
1263 |
y2 = fy2 + affine._dy;
|
|
1264 |
break;
|
|
1265 |
case TxScale:
|
|
1266 |
x1 = affine._m11 * fx1 + affine._dx;
|
|
1267 |
y1 = affine._m22 * fy1 + affine._dy;
|
|
1268 |
x2 = affine._m11 * fx2 + affine._dx;
|
|
1269 |
y2 = affine._m22 * fy2 + affine._dy;
|
|
1270 |
break;
|
|
1271 |
case TxRotate:
|
|
1272 |
case TxShear:
|
|
1273 |
case TxProject:
|
|
1274 |
x1 = affine._m11 * fx1 + affine._m21 * fy1 + affine._dx;
|
|
1275 |
y1 = affine._m12 * fx1 + affine._m22 * fy1 + affine._dy;
|
|
1276 |
x2 = affine._m11 * fx2 + affine._m21 * fy2 + affine._dx;
|
|
1277 |
y2 = affine._m12 * fx2 + affine._m22 * fy2 + affine._dy;
|
|
1278 |
if (t == TxProject) {
|
|
1279 |
qreal w = 1./(m_13 * fx1 + m_23 * fy1 + m_33);
|
|
1280 |
x1 *= w;
|
|
1281 |
y1 *= w;
|
|
1282 |
w = 1./(m_13 * fx2 + m_23 * fy2 + m_33);
|
|
1283 |
x2 *= w;
|
|
1284 |
y2 *= w;
|
|
1285 |
}
|
|
1286 |
}
|
|
1287 |
return QLineF(x1, y1, x2, y2);
|
|
1288 |
}
|
|
1289 |
|
|
1290 |
static QPolygonF mapProjective(const QTransform &transform, const QPolygonF &poly)
|
|
1291 |
{
|
|
1292 |
if (poly.size() == 0)
|
|
1293 |
return poly;
|
|
1294 |
|
|
1295 |
if (poly.size() == 1)
|
|
1296 |
return QPolygonF() << transform.map(poly.at(0));
|
|
1297 |
|
|
1298 |
QPainterPath path;
|
|
1299 |
path.addPolygon(poly);
|
|
1300 |
|
|
1301 |
path = transform.map(path);
|
|
1302 |
|
|
1303 |
QPolygonF result;
|
|
1304 |
for (int i = 0; i < path.elementCount(); ++i)
|
|
1305 |
result << path.elementAt(i);
|
|
1306 |
return result;
|
|
1307 |
}
|
|
1308 |
|
|
1309 |
|
|
1310 |
/*!
|
|
1311 |
\fn QPolygonF operator *(const QPolygonF &polygon, const QTransform &matrix)
|
|
1312 |
\since 4.3
|
|
1313 |
\relates QTransform
|
|
1314 |
|
|
1315 |
This is the same as \a{matrix}.map(\a{polygon}).
|
|
1316 |
|
|
1317 |
\sa QTransform::map()
|
|
1318 |
*/
|
|
1319 |
|
|
1320 |
/*!
|
|
1321 |
\fn QPolygon operator*(const QPolygon &polygon, const QTransform &matrix)
|
|
1322 |
\relates QTransform
|
|
1323 |
|
|
1324 |
This is the same as \a{matrix}.map(\a{polygon}).
|
|
1325 |
|
|
1326 |
\sa QTransform::map()
|
|
1327 |
*/
|
|
1328 |
|
|
1329 |
/*!
|
|
1330 |
\fn QPolygonF QTransform::map(const QPolygonF &polygon) const
|
|
1331 |
\overload
|
|
1332 |
|
|
1333 |
Creates and returns a QPolygonF object that is a copy of the given
|
|
1334 |
\a polygon, mapped into the coordinate system defined by this
|
|
1335 |
matrix.
|
|
1336 |
*/
|
|
1337 |
QPolygonF QTransform::map(const QPolygonF &a) const
|
|
1338 |
{
|
|
1339 |
TransformationType t = inline_type();
|
|
1340 |
if (t <= TxTranslate)
|
|
1341 |
return a.translated(affine._dx, affine._dy);
|
|
1342 |
|
|
1343 |
if (t >= QTransform::TxProject)
|
|
1344 |
return mapProjective(*this, a);
|
|
1345 |
|
|
1346 |
int size = a.size();
|
|
1347 |
int i;
|
|
1348 |
QPolygonF p(size);
|
|
1349 |
const QPointF *da = a.constData();
|
|
1350 |
QPointF *dp = p.data();
|
|
1351 |
|
|
1352 |
for(i = 0; i < size; ++i) {
|
|
1353 |
MAP(da[i].xp, da[i].yp, dp[i].xp, dp[i].yp);
|
|
1354 |
}
|
|
1355 |
return p;
|
|
1356 |
}
|
|
1357 |
|
|
1358 |
/*!
|
|
1359 |
\fn QPolygon QTransform::map(const QPolygon &polygon) const
|
|
1360 |
\overload
|
|
1361 |
|
|
1362 |
Creates and returns a QPolygon object that is a copy of the given
|
|
1363 |
\a polygon, mapped into the coordinate system defined by this
|
|
1364 |
matrix. Note that the transformed coordinates are rounded to the
|
|
1365 |
nearest integer.
|
|
1366 |
*/
|
|
1367 |
QPolygon QTransform::map(const QPolygon &a) const
|
|
1368 |
{
|
|
1369 |
TransformationType t = inline_type();
|
|
1370 |
if (t <= TxTranslate)
|
|
1371 |
return a.translated(qRound(affine._dx), qRound(affine._dy));
|
|
1372 |
|
|
1373 |
if (t >= QTransform::TxProject)
|
|
1374 |
return mapProjective(*this, QPolygonF(a)).toPolygon();
|
|
1375 |
|
|
1376 |
int size = a.size();
|
|
1377 |
int i;
|
|
1378 |
QPolygon p(size);
|
|
1379 |
const QPoint *da = a.constData();
|
|
1380 |
QPoint *dp = p.data();
|
|
1381 |
|
|
1382 |
for(i = 0; i < size; ++i) {
|
|
1383 |
qreal nx = 0, ny = 0;
|
|
1384 |
MAP(da[i].xp, da[i].yp, nx, ny);
|
|
1385 |
dp[i].xp = qRound(nx);
|
|
1386 |
dp[i].yp = qRound(ny);
|
|
1387 |
}
|
|
1388 |
return p;
|
|
1389 |
}
|
|
1390 |
|
|
1391 |
/*!
|
|
1392 |
\fn QRegion operator*(const QRegion ®ion, const QTransform &matrix)
|
|
1393 |
\relates QTransform
|
|
1394 |
|
|
1395 |
This is the same as \a{matrix}.map(\a{region}).
|
|
1396 |
|
|
1397 |
\sa QTransform::map()
|
|
1398 |
*/
|
|
1399 |
|
|
1400 |
extern QPainterPath qt_regionToPath(const QRegion ®ion);
|
|
1401 |
|
|
1402 |
/*!
|
|
1403 |
\fn QRegion QTransform::map(const QRegion ®ion) const
|
|
1404 |
\overload
|
|
1405 |
|
|
1406 |
Creates and returns a QRegion object that is a copy of the given
|
|
1407 |
\a region, mapped into the coordinate system defined by this matrix.
|
|
1408 |
|
|
1409 |
Calling this method can be rather expensive if rotations or
|
|
1410 |
shearing are used.
|
|
1411 |
*/
|
|
1412 |
QRegion QTransform::map(const QRegion &r) const
|
|
1413 |
{
|
|
1414 |
TransformationType t = inline_type();
|
|
1415 |
if (t == TxNone)
|
|
1416 |
return r;
|
|
1417 |
|
|
1418 |
if (t == TxTranslate) {
|
|
1419 |
QRegion copy(r);
|
|
1420 |
copy.translate(qRound(affine._dx), qRound(affine._dy));
|
|
1421 |
return copy;
|
|
1422 |
}
|
|
1423 |
|
|
1424 |
if (t == TxScale && r.numRects() == 1)
|
|
1425 |
return QRegion(mapRect(r.boundingRect()));
|
|
1426 |
|
|
1427 |
QPainterPath p = map(qt_regionToPath(r));
|
|
1428 |
return p.toFillPolygon(QTransform()).toPolygon();
|
|
1429 |
}
|
|
1430 |
|
|
1431 |
struct QHomogeneousCoordinate
|
|
1432 |
{
|
|
1433 |
qreal x;
|
|
1434 |
qreal y;
|
|
1435 |
qreal w;
|
|
1436 |
|
|
1437 |
QHomogeneousCoordinate() {}
|
|
1438 |
QHomogeneousCoordinate(qreal x_, qreal y_, qreal w_) : x(x_), y(y_), w(w_) {}
|
|
1439 |
|
|
1440 |
const QPointF toPoint() const {
|
|
1441 |
qreal iw = 1. / w;
|
|
1442 |
return QPointF(x * iw, y * iw);
|
|
1443 |
}
|
|
1444 |
};
|
|
1445 |
|
|
1446 |
static inline QHomogeneousCoordinate mapHomogeneous(const QTransform &transform, const QPointF &p)
|
|
1447 |
{
|
|
1448 |
QHomogeneousCoordinate c;
|
|
1449 |
c.x = transform.m11() * p.x() + transform.m21() * p.y() + transform.m31();
|
|
1450 |
c.y = transform.m12() * p.x() + transform.m22() * p.y() + transform.m32();
|
|
1451 |
c.w = transform.m13() * p.x() + transform.m23() * p.y() + transform.m33();
|
|
1452 |
return c;
|
|
1453 |
}
|
|
1454 |
|
|
1455 |
static inline bool lineTo_clipped(QPainterPath &path, const QTransform &transform, const QPointF &a, const QPointF &b,
|
|
1456 |
bool needsMoveTo, bool needsLineTo = true)
|
|
1457 |
{
|
|
1458 |
QHomogeneousCoordinate ha = mapHomogeneous(transform, a);
|
|
1459 |
QHomogeneousCoordinate hb = mapHomogeneous(transform, b);
|
|
1460 |
|
|
1461 |
if (ha.w < Q_NEAR_CLIP && hb.w < Q_NEAR_CLIP)
|
|
1462 |
return false;
|
|
1463 |
|
|
1464 |
if (hb.w < Q_NEAR_CLIP) {
|
|
1465 |
const qreal t = (Q_NEAR_CLIP - hb.w) / (ha.w - hb.w);
|
|
1466 |
|
|
1467 |
hb.x += (ha.x - hb.x) * t;
|
|
1468 |
hb.y += (ha.y - hb.y) * t;
|
|
1469 |
hb.w = qreal(Q_NEAR_CLIP);
|
|
1470 |
} else if (ha.w < Q_NEAR_CLIP) {
|
|
1471 |
const qreal t = (Q_NEAR_CLIP - ha.w) / (hb.w - ha.w);
|
|
1472 |
|
|
1473 |
ha.x += (hb.x - ha.x) * t;
|
|
1474 |
ha.y += (hb.y - ha.y) * t;
|
|
1475 |
ha.w = qreal(Q_NEAR_CLIP);
|
|
1476 |
|
|
1477 |
const QPointF p = ha.toPoint();
|
|
1478 |
if (needsMoveTo) {
|
|
1479 |
path.moveTo(p);
|
|
1480 |
needsMoveTo = false;
|
|
1481 |
} else {
|
|
1482 |
path.lineTo(p);
|
|
1483 |
}
|
|
1484 |
}
|
|
1485 |
|
|
1486 |
if (needsMoveTo)
|
|
1487 |
path.moveTo(ha.toPoint());
|
|
1488 |
|
|
1489 |
if (needsLineTo)
|
|
1490 |
path.lineTo(hb.toPoint());
|
|
1491 |
|
|
1492 |
return true;
|
|
1493 |
}
|
|
1494 |
|
|
1495 |
static inline bool cubicTo_clipped(QPainterPath &path, const QTransform &transform, const QPointF &a, const QPointF &b, const QPointF &c, const QPointF &d, bool needsMoveTo)
|
|
1496 |
{
|
|
1497 |
// Convert projective xformed curves to line
|
|
1498 |
// segments so they can be transformed more accurately
|
|
1499 |
QPolygonF segment = QBezier::fromPoints(a, b, c, d).toPolygon();
|
|
1500 |
|
|
1501 |
for (int i = 0; i < segment.size() - 1; ++i)
|
|
1502 |
if (lineTo_clipped(path, transform, segment.at(i), segment.at(i+1), needsMoveTo))
|
|
1503 |
needsMoveTo = false;
|
|
1504 |
|
|
1505 |
return !needsMoveTo;
|
|
1506 |
}
|
|
1507 |
|
|
1508 |
static QPainterPath mapProjective(const QTransform &transform, const QPainterPath &path)
|
|
1509 |
{
|
|
1510 |
QPainterPath result;
|
|
1511 |
|
|
1512 |
QPointF last;
|
|
1513 |
QPointF lastMoveTo;
|
|
1514 |
bool needsMoveTo = true;
|
|
1515 |
for (int i = 0; i < path.elementCount(); ++i) {
|
|
1516 |
switch (path.elementAt(i).type) {
|
|
1517 |
case QPainterPath::MoveToElement:
|
|
1518 |
if (i > 0 && lastMoveTo != last)
|
|
1519 |
lineTo_clipped(result, transform, last, lastMoveTo, needsMoveTo);
|
|
1520 |
|
|
1521 |
lastMoveTo = path.elementAt(i);
|
|
1522 |
last = path.elementAt(i);
|
|
1523 |
needsMoveTo = true;
|
|
1524 |
break;
|
|
1525 |
case QPainterPath::LineToElement:
|
|
1526 |
if (lineTo_clipped(result, transform, last, path.elementAt(i), needsMoveTo))
|
|
1527 |
needsMoveTo = false;
|
|
1528 |
last = path.elementAt(i);
|
|
1529 |
break;
|
|
1530 |
case QPainterPath::CurveToElement:
|
|
1531 |
if (cubicTo_clipped(result, transform, last, path.elementAt(i), path.elementAt(i+1), path.elementAt(i+2), needsMoveTo))
|
|
1532 |
needsMoveTo = false;
|
|
1533 |
i += 2;
|
|
1534 |
last = path.elementAt(i);
|
|
1535 |
break;
|
|
1536 |
default:
|
|
1537 |
Q_ASSERT(false);
|
|
1538 |
}
|
|
1539 |
}
|
|
1540 |
|
|
1541 |
if (path.elementCount() > 0 && lastMoveTo != last)
|
|
1542 |
lineTo_clipped(result, transform, last, lastMoveTo, needsMoveTo, false);
|
|
1543 |
|
|
1544 |
result.setFillRule(path.fillRule());
|
|
1545 |
return result;
|
|
1546 |
}
|
|
1547 |
|
|
1548 |
/*!
|
|
1549 |
\fn QPainterPath operator *(const QPainterPath &path, const QTransform &matrix)
|
|
1550 |
\since 4.3
|
|
1551 |
\relates QTransform
|
|
1552 |
|
|
1553 |
This is the same as \a{matrix}.map(\a{path}).
|
|
1554 |
|
|
1555 |
\sa QTransform::map()
|
|
1556 |
*/
|
|
1557 |
|
|
1558 |
/*!
|
|
1559 |
\overload
|
|
1560 |
|
|
1561 |
Creates and returns a QPainterPath object that is a copy of the
|
|
1562 |
given \a path, mapped into the coordinate system defined by this
|
|
1563 |
matrix.
|
|
1564 |
*/
|
|
1565 |
QPainterPath QTransform::map(const QPainterPath &path) const
|
|
1566 |
{
|
|
1567 |
TransformationType t = inline_type();
|
|
1568 |
if (t == TxNone || path.isEmpty())
|
|
1569 |
return path;
|
|
1570 |
|
|
1571 |
if (t >= TxProject)
|
|
1572 |
return mapProjective(*this, path);
|
|
1573 |
|
|
1574 |
QPainterPath copy = path;
|
|
1575 |
|
|
1576 |
if (t == TxTranslate) {
|
|
1577 |
copy.translate(affine._dx, affine._dy);
|
|
1578 |
} else {
|
|
1579 |
copy.detach();
|
|
1580 |
// Full xform
|
|
1581 |
for (int i=0; i<path.elementCount(); ++i) {
|
|
1582 |
QPainterPath::Element &e = copy.d_ptr->elements[i];
|
|
1583 |
MAP(e.x, e.y, e.x, e.y);
|
|
1584 |
}
|
|
1585 |
}
|
|
1586 |
|
|
1587 |
return copy;
|
|
1588 |
}
|
|
1589 |
|
|
1590 |
/*!
|
|
1591 |
\fn QPolygon QTransform::mapToPolygon(const QRect &rectangle) const
|
|
1592 |
|
|
1593 |
Creates and returns a QPolygon representation of the given \a
|
|
1594 |
rectangle, mapped into the coordinate system defined by this
|
|
1595 |
matrix.
|
|
1596 |
|
|
1597 |
The rectangle's coordinates are transformed using the following
|
|
1598 |
formulas:
|
|
1599 |
|
|
1600 |
\snippet doc/src/snippets/code/src_gui_painting_qtransform.cpp 1
|
|
1601 |
|
|
1602 |
Polygons and rectangles behave slightly differently when
|
|
1603 |
transformed (due to integer rounding), so
|
|
1604 |
\c{matrix.map(QPolygon(rectangle))} is not always the same as
|
|
1605 |
\c{matrix.mapToPolygon(rectangle)}.
|
|
1606 |
|
|
1607 |
\sa mapRect(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
|
1608 |
Operations}
|
|
1609 |
*/
|
|
1610 |
QPolygon QTransform::mapToPolygon(const QRect &rect) const
|
|
1611 |
{
|
|
1612 |
TransformationType t = inline_type();
|
|
1613 |
|
|
1614 |
QPolygon a(4);
|
|
1615 |
qreal x[4] = { 0, 0, 0, 0 }, y[4] = { 0, 0, 0, 0 };
|
|
1616 |
if (t <= TxScale) {
|
|
1617 |
x[0] = affine._m11*rect.x() + affine._dx;
|
|
1618 |
y[0] = affine._m22*rect.y() + affine._dy;
|
|
1619 |
qreal w = affine._m11*rect.width();
|
|
1620 |
qreal h = affine._m22*rect.height();
|
|
1621 |
if (w < 0) {
|
|
1622 |
w = -w;
|
|
1623 |
x[0] -= w;
|
|
1624 |
}
|
|
1625 |
if (h < 0) {
|
|
1626 |
h = -h;
|
|
1627 |
y[0] -= h;
|
|
1628 |
}
|
|
1629 |
x[1] = x[0]+w;
|
|
1630 |
x[2] = x[1];
|
|
1631 |
x[3] = x[0];
|
|
1632 |
y[1] = y[0];
|
|
1633 |
y[2] = y[0]+h;
|
|
1634 |
y[3] = y[2];
|
|
1635 |
} else {
|
|
1636 |
qreal right = rect.x() + rect.width();
|
|
1637 |
qreal bottom = rect.y() + rect.height();
|
|
1638 |
MAP(rect.x(), rect.y(), x[0], y[0]);
|
|
1639 |
MAP(right, rect.y(), x[1], y[1]);
|
|
1640 |
MAP(right, bottom, x[2], y[2]);
|
|
1641 |
MAP(rect.x(), bottom, x[3], y[3]);
|
|
1642 |
}
|
|
1643 |
|
|
1644 |
// all coordinates are correctly, tranform to a pointarray
|
|
1645 |
// (rounding to the next integer)
|
|
1646 |
a.setPoints(4, qRound(x[0]), qRound(y[0]),
|
|
1647 |
qRound(x[1]), qRound(y[1]),
|
|
1648 |
qRound(x[2]), qRound(y[2]),
|
|
1649 |
qRound(x[3]), qRound(y[3]));
|
|
1650 |
return a;
|
|
1651 |
}
|
|
1652 |
|
|
1653 |
/*!
|
|
1654 |
Creates a transformation matrix, \a trans, that maps a unit square
|
|
1655 |
to a four-sided polygon, \a quad. Returns true if the transformation
|
|
1656 |
is constructed or false if such a transformation does not exist.
|
|
1657 |
|
|
1658 |
\sa quadToSquare(), quadToQuad()
|
|
1659 |
*/
|
|
1660 |
bool QTransform::squareToQuad(const QPolygonF &quad, QTransform &trans)
|
|
1661 |
{
|
|
1662 |
if (quad.count() != 4)
|
|
1663 |
return false;
|
|
1664 |
|
|
1665 |
qreal dx0 = quad[0].x();
|
|
1666 |
qreal dx1 = quad[1].x();
|
|
1667 |
qreal dx2 = quad[2].x();
|
|
1668 |
qreal dx3 = quad[3].x();
|
|
1669 |
|
|
1670 |
qreal dy0 = quad[0].y();
|
|
1671 |
qreal dy1 = quad[1].y();
|
|
1672 |
qreal dy2 = quad[2].y();
|
|
1673 |
qreal dy3 = quad[3].y();
|
|
1674 |
|
|
1675 |
double ax = dx0 - dx1 + dx2 - dx3;
|
|
1676 |
double ay = dy0 - dy1 + dy2 - dy3;
|
|
1677 |
|
|
1678 |
if (!ax && !ay) { //afine transform
|
|
1679 |
trans.setMatrix(dx1 - dx0, dy1 - dy0, 0,
|
|
1680 |
dx2 - dx1, dy2 - dy1, 0,
|
|
1681 |
dx0, dy0, 1);
|
|
1682 |
} else {
|
|
1683 |
double ax1 = dx1 - dx2;
|
|
1684 |
double ax2 = dx3 - dx2;
|
|
1685 |
double ay1 = dy1 - dy2;
|
|
1686 |
double ay2 = dy3 - dy2;
|
|
1687 |
|
|
1688 |
/*determinants */
|
|
1689 |
double gtop = ax * ay2 - ax2 * ay;
|
|
1690 |
double htop = ax1 * ay - ax * ay1;
|
|
1691 |
double bottom = ax1 * ay2 - ax2 * ay1;
|
|
1692 |
|
|
1693 |
double a, b, c, d, e, f, g, h; /*i is always 1*/
|
|
1694 |
|
|
1695 |
if (!bottom)
|
|
1696 |
return false;
|
|
1697 |
|
|
1698 |
g = gtop/bottom;
|
|
1699 |
h = htop/bottom;
|
|
1700 |
|
|
1701 |
a = dx1 - dx0 + g * dx1;
|
|
1702 |
b = dx3 - dx0 + h * dx3;
|
|
1703 |
c = dx0;
|
|
1704 |
d = dy1 - dy0 + g * dy1;
|
|
1705 |
e = dy3 - dy0 + h * dy3;
|
|
1706 |
f = dy0;
|
|
1707 |
|
|
1708 |
trans.setMatrix(a, d, g,
|
|
1709 |
b, e, h,
|
|
1710 |
c, f, 1.0);
|
|
1711 |
}
|
|
1712 |
|
|
1713 |
return true;
|
|
1714 |
}
|
|
1715 |
|
|
1716 |
/*!
|
|
1717 |
\fn bool QTransform::quadToSquare(const QPolygonF &quad, QTransform &trans)
|
|
1718 |
|
|
1719 |
Creates a transformation matrix, \a trans, that maps a four-sided polygon,
|
|
1720 |
\a quad, to a unit square. Returns true if the transformation is constructed
|
|
1721 |
or false if such a transformation does not exist.
|
|
1722 |
|
|
1723 |
\sa squareToQuad(), quadToQuad()
|
|
1724 |
*/
|
|
1725 |
bool QTransform::quadToSquare(const QPolygonF &quad, QTransform &trans)
|
|
1726 |
{
|
|
1727 |
if (!squareToQuad(quad, trans))
|
|
1728 |
return false;
|
|
1729 |
|
|
1730 |
bool invertible = false;
|
|
1731 |
trans = trans.inverted(&invertible);
|
|
1732 |
|
|
1733 |
return invertible;
|
|
1734 |
}
|
|
1735 |
|
|
1736 |
/*!
|
|
1737 |
Creates a transformation matrix, \a trans, that maps a four-sided
|
|
1738 |
polygon, \a one, to another four-sided polygon, \a two.
|
|
1739 |
Returns true if the transformation is possible; otherwise returns
|
|
1740 |
false.
|
|
1741 |
|
|
1742 |
This is a convenience method combining quadToSquare() and
|
|
1743 |
squareToQuad() methods. It allows the input quad to be
|
|
1744 |
transformed into any other quad.
|
|
1745 |
|
|
1746 |
\sa squareToQuad(), quadToSquare()
|
|
1747 |
*/
|
|
1748 |
bool QTransform::quadToQuad(const QPolygonF &one,
|
|
1749 |
const QPolygonF &two,
|
|
1750 |
QTransform &trans)
|
|
1751 |
{
|
|
1752 |
QTransform stq;
|
|
1753 |
if (!quadToSquare(one, trans))
|
|
1754 |
return false;
|
|
1755 |
if (!squareToQuad(two, stq))
|
|
1756 |
return false;
|
|
1757 |
trans *= stq;
|
|
1758 |
//qDebug()<<"Final = "<<trans;
|
|
1759 |
return true;
|
|
1760 |
}
|
|
1761 |
|
|
1762 |
/*!
|
|
1763 |
Sets the matrix elements to the specified values, \a m11,
|
|
1764 |
\a m12, \a m13 \a m21, \a m22, \a m23 \a m31, \a m32 and
|
|
1765 |
\a m33. Note that this function replaces the previous values.
|
|
1766 |
QTransform provides the translate(), rotate(), scale() and shear()
|
|
1767 |
convenience functions to manipulate the various matrix elements
|
|
1768 |
based on the currently defined coordinate system.
|
|
1769 |
|
|
1770 |
\sa QTransform()
|
|
1771 |
*/
|
|
1772 |
|
|
1773 |
void QTransform::setMatrix(qreal m11, qreal m12, qreal m13,
|
|
1774 |
qreal m21, qreal m22, qreal m23,
|
|
1775 |
qreal m31, qreal m32, qreal m33)
|
|
1776 |
{
|
|
1777 |
affine._m11 = m11; affine._m12 = m12; m_13 = m13;
|
|
1778 |
affine._m21 = m21; affine._m22 = m22; m_23 = m23;
|
|
1779 |
affine._dx = m31; affine._dy = m32; m_33 = m33;
|
|
1780 |
m_type = TxNone;
|
|
1781 |
m_dirty = TxProject;
|
|
1782 |
}
|
|
1783 |
|
|
1784 |
static inline bool needsPerspectiveClipping(const QRectF &rect, const QTransform &transform)
|
|
1785 |
{
|
|
1786 |
const qreal wx = qMin(transform.m13() * rect.left(), transform.m13() * rect.right());
|
|
1787 |
const qreal wy = qMin(transform.m23() * rect.top(), transform.m23() * rect.bottom());
|
|
1788 |
|
|
1789 |
return wx + wy + transform.m33() < Q_NEAR_CLIP;
|
|
1790 |
}
|
|
1791 |
|
|
1792 |
QRect QTransform::mapRect(const QRect &rect) const
|
|
1793 |
{
|
|
1794 |
TransformationType t = inline_type();
|
|
1795 |
if (t <= TxTranslate)
|
|
1796 |
return rect.translated(qRound(affine._dx), qRound(affine._dy));
|
|
1797 |
|
|
1798 |
if (t <= TxScale) {
|
|
1799 |
int x = qRound(affine._m11*rect.x() + affine._dx);
|
|
1800 |
int y = qRound(affine._m22*rect.y() + affine._dy);
|
|
1801 |
int w = qRound(affine._m11*rect.width());
|
|
1802 |
int h = qRound(affine._m22*rect.height());
|
|
1803 |
if (w < 0) {
|
|
1804 |
w = -w;
|
|
1805 |
x -= w;
|
|
1806 |
}
|
|
1807 |
if (h < 0) {
|
|
1808 |
h = -h;
|
|
1809 |
y -= h;
|
|
1810 |
}
|
|
1811 |
return QRect(x, y, w, h);
|
|
1812 |
} else if (t < TxProject || !needsPerspectiveClipping(rect, *this)) {
|
|
1813 |
// see mapToPolygon for explanations of the algorithm.
|
|
1814 |
qreal x = 0, y = 0;
|
|
1815 |
MAP(rect.left(), rect.top(), x, y);
|
|
1816 |
qreal xmin = x;
|
|
1817 |
qreal ymin = y;
|
|
1818 |
qreal xmax = x;
|
|
1819 |
qreal ymax = y;
|
|
1820 |
MAP(rect.right() + 1, rect.top(), x, y);
|
|
1821 |
xmin = qMin(xmin, x);
|
|
1822 |
ymin = qMin(ymin, y);
|
|
1823 |
xmax = qMax(xmax, x);
|
|
1824 |
ymax = qMax(ymax, y);
|
|
1825 |
MAP(rect.right() + 1, rect.bottom() + 1, x, y);
|
|
1826 |
xmin = qMin(xmin, x);
|
|
1827 |
ymin = qMin(ymin, y);
|
|
1828 |
xmax = qMax(xmax, x);
|
|
1829 |
ymax = qMax(ymax, y);
|
|
1830 |
MAP(rect.left(), rect.bottom() + 1, x, y);
|
|
1831 |
xmin = qMin(xmin, x);
|
|
1832 |
ymin = qMin(ymin, y);
|
|
1833 |
xmax = qMax(xmax, x);
|
|
1834 |
ymax = qMax(ymax, y);
|
|
1835 |
return QRect(qRound(xmin), qRound(ymin), qRound(xmax)-qRound(xmin), qRound(ymax)-qRound(ymin));
|
|
1836 |
} else {
|
|
1837 |
QPainterPath path;
|
|
1838 |
path.addRect(rect);
|
|
1839 |
return map(path).boundingRect().toRect();
|
|
1840 |
}
|
|
1841 |
}
|
|
1842 |
|
|
1843 |
/*!
|
|
1844 |
\fn QRectF QTransform::mapRect(const QRectF &rectangle) const
|
|
1845 |
|
|
1846 |
Creates and returns a QRectF object that is a copy of the given \a
|
|
1847 |
rectangle, mapped into the coordinate system defined by this
|
|
1848 |
matrix.
|
|
1849 |
|
|
1850 |
The rectangle's coordinates are transformed using the following
|
|
1851 |
formulas:
|
|
1852 |
|
|
1853 |
\snippet doc/src/snippets/code/src_gui_painting_qtransform.cpp 2
|
|
1854 |
|
|
1855 |
If rotation or shearing has been specified, this function returns
|
|
1856 |
the \e bounding rectangle. To retrieve the exact region the given
|
|
1857 |
\a rectangle maps to, use the mapToPolygon() function instead.
|
|
1858 |
|
|
1859 |
\sa mapToPolygon(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
|
1860 |
Operations}
|
|
1861 |
*/
|
|
1862 |
QRectF QTransform::mapRect(const QRectF &rect) const
|
|
1863 |
{
|
|
1864 |
TransformationType t = inline_type();
|
|
1865 |
if (t <= TxTranslate)
|
|
1866 |
return rect.translated(affine._dx, affine._dy);
|
|
1867 |
|
|
1868 |
if (t <= TxScale) {
|
|
1869 |
qreal x = affine._m11*rect.x() + affine._dx;
|
|
1870 |
qreal y = affine._m22*rect.y() + affine._dy;
|
|
1871 |
qreal w = affine._m11*rect.width();
|
|
1872 |
qreal h = affine._m22*rect.height();
|
|
1873 |
if (w < 0) {
|
|
1874 |
w = -w;
|
|
1875 |
x -= w;
|
|
1876 |
}
|
|
1877 |
if (h < 0) {
|
|
1878 |
h = -h;
|
|
1879 |
y -= h;
|
|
1880 |
}
|
|
1881 |
return QRectF(x, y, w, h);
|
|
1882 |
} else if (t < TxProject || !needsPerspectiveClipping(rect, *this)) {
|
|
1883 |
qreal x = 0, y = 0;
|
|
1884 |
MAP(rect.x(), rect.y(), x, y);
|
|
1885 |
qreal xmin = x;
|
|
1886 |
qreal ymin = y;
|
|
1887 |
qreal xmax = x;
|
|
1888 |
qreal ymax = y;
|
|
1889 |
MAP(rect.x() + rect.width(), rect.y(), x, y);
|
|
1890 |
xmin = qMin(xmin, x);
|
|
1891 |
ymin = qMin(ymin, y);
|
|
1892 |
xmax = qMax(xmax, x);
|
|
1893 |
ymax = qMax(ymax, y);
|
|
1894 |
MAP(rect.x() + rect.width(), rect.y() + rect.height(), x, y);
|
|
1895 |
xmin = qMin(xmin, x);
|
|
1896 |
ymin = qMin(ymin, y);
|
|
1897 |
xmax = qMax(xmax, x);
|
|
1898 |
ymax = qMax(ymax, y);
|
|
1899 |
MAP(rect.x(), rect.y() + rect.height(), x, y);
|
|
1900 |
xmin = qMin(xmin, x);
|
|
1901 |
ymin = qMin(ymin, y);
|
|
1902 |
xmax = qMax(xmax, x);
|
|
1903 |
ymax = qMax(ymax, y);
|
|
1904 |
return QRectF(xmin, ymin, xmax-xmin, ymax - ymin);
|
|
1905 |
} else {
|
|
1906 |
QPainterPath path;
|
|
1907 |
path.addRect(rect);
|
|
1908 |
return map(path).boundingRect();
|
|
1909 |
}
|
|
1910 |
}
|
|
1911 |
|
|
1912 |
/*!
|
|
1913 |
\fn QRect QTransform::mapRect(const QRect &rectangle) const
|
|
1914 |
\overload
|
|
1915 |
|
|
1916 |
Creates and returns a QRect object that is a copy of the given \a
|
|
1917 |
rectangle, mapped into the coordinate system defined by this
|
|
1918 |
matrix. Note that the transformed coordinates are rounded to the
|
|
1919 |
nearest integer.
|
|
1920 |
*/
|
|
1921 |
|
|
1922 |
/*!
|
|
1923 |
Maps the given coordinates \a x and \a y into the coordinate
|
|
1924 |
system defined by this matrix. The resulting values are put in *\a
|
|
1925 |
tx and *\a ty, respectively.
|
|
1926 |
|
|
1927 |
The coordinates are transformed using the following formulas:
|
|
1928 |
|
|
1929 |
\snippet doc/src/snippets/code/src_gui_painting_qtransform.cpp 3
|
|
1930 |
|
|
1931 |
The point (x, y) is the original point, and (x', y') is the
|
|
1932 |
transformed point.
|
|
1933 |
|
|
1934 |
\sa {QTransform#Basic Matrix Operations}{Basic Matrix Operations}
|
|
1935 |
*/
|
|
1936 |
void QTransform::map(qreal x, qreal y, qreal *tx, qreal *ty) const
|
|
1937 |
{
|
|
1938 |
TransformationType t = inline_type();
|
|
1939 |
MAP(x, y, *tx, *ty);
|
|
1940 |
}
|
|
1941 |
|
|
1942 |
/*!
|
|
1943 |
\overload
|
|
1944 |
|
|
1945 |
Maps the given coordinates \a x and \a y into the coordinate
|
|
1946 |
system defined by this matrix. The resulting values are put in *\a
|
|
1947 |
tx and *\a ty, respectively. Note that the transformed coordinates
|
|
1948 |
are rounded to the nearest integer.
|
|
1949 |
*/
|
|
1950 |
void QTransform::map(int x, int y, int *tx, int *ty) const
|
|
1951 |
{
|
|
1952 |
TransformationType t = inline_type();
|
|
1953 |
qreal fx = 0, fy = 0;
|
|
1954 |
MAP(x, y, fx, fy);
|
|
1955 |
*tx = qRound(fx);
|
|
1956 |
*ty = qRound(fy);
|
|
1957 |
}
|
|
1958 |
|
|
1959 |
/*!
|
|
1960 |
Returns the QTransform as an affine matrix.
|
|
1961 |
|
|
1962 |
\warning If a perspective transformation has been specified,
|
|
1963 |
then the conversion will cause loss of data.
|
|
1964 |
*/
|
|
1965 |
const QMatrix &QTransform::toAffine() const
|
|
1966 |
{
|
|
1967 |
return affine;
|
|
1968 |
}
|
|
1969 |
|
|
1970 |
/*!
|
|
1971 |
Returns the transformation type of this matrix.
|
|
1972 |
|
|
1973 |
The transformation type is the highest enumeration value
|
|
1974 |
capturing all of the matrix's transformations. For example,
|
|
1975 |
if the matrix both scales and shears, the type would be \c TxShear,
|
|
1976 |
because \c TxShear has a higher enumeration value than \c TxScale.
|
|
1977 |
|
|
1978 |
Knowing the transformation type of a matrix is useful for optimization:
|
|
1979 |
you can often handle specific types more optimally than handling
|
|
1980 |
the generic case.
|
|
1981 |
*/
|
|
1982 |
QTransform::TransformationType QTransform::type() const
|
|
1983 |
{
|
|
1984 |
if(m_dirty == TxNone || m_dirty < m_type)
|
|
1985 |
return static_cast<TransformationType>(m_type);
|
|
1986 |
|
|
1987 |
switch (static_cast<TransformationType>(m_dirty)) {
|
|
1988 |
case TxProject:
|
|
1989 |
if (!qFuzzyIsNull(m_13) || !qFuzzyIsNull(m_23) || !qFuzzyIsNull(m_33 - 1)) {
|
|
1990 |
m_type = TxProject;
|
|
1991 |
break;
|
|
1992 |
}
|
|
1993 |
case TxShear:
|
|
1994 |
case TxRotate:
|
|
1995 |
if (!qFuzzyIsNull(affine._m12) || !qFuzzyIsNull(affine._m21)) {
|
|
1996 |
const qreal dot = affine._m11 * affine._m12 + affine._m21 * affine._m22;
|
|
1997 |
if (qFuzzyIsNull(dot))
|
|
1998 |
m_type = TxRotate;
|
|
1999 |
else
|
|
2000 |
m_type = TxShear;
|
|
2001 |
break;
|
|
2002 |
}
|
|
2003 |
case TxScale:
|
|
2004 |
if (!qFuzzyIsNull(affine._m11 - 1) || !qFuzzyIsNull(affine._m22 - 1)) {
|
|
2005 |
m_type = TxScale;
|
|
2006 |
break;
|
|
2007 |
}
|
|
2008 |
case TxTranslate:
|
|
2009 |
if (!qFuzzyIsNull(affine._dx) || !qFuzzyIsNull(affine._dy)) {
|
|
2010 |
m_type = TxTranslate;
|
|
2011 |
break;
|
|
2012 |
}
|
|
2013 |
case TxNone:
|
|
2014 |
m_type = TxNone;
|
|
2015 |
break;
|
|
2016 |
}
|
|
2017 |
|
|
2018 |
m_dirty = TxNone;
|
|
2019 |
return static_cast<TransformationType>(m_type);
|
|
2020 |
}
|
|
2021 |
|
|
2022 |
/*!
|
|
2023 |
|
|
2024 |
Returns the transform as a QVariant.
|
|
2025 |
*/
|
|
2026 |
QTransform::operator QVariant() const
|
|
2027 |
{
|
|
2028 |
return QVariant(QVariant::Transform, this);
|
|
2029 |
}
|
|
2030 |
|
|
2031 |
|
|
2032 |
/*!
|
|
2033 |
\fn bool QTransform::isInvertible() const
|
|
2034 |
|
|
2035 |
Returns true if the matrix is invertible, otherwise returns false.
|
|
2036 |
|
|
2037 |
\sa inverted()
|
|
2038 |
*/
|
|
2039 |
|
|
2040 |
/*!
|
|
2041 |
\fn qreal QTransform::det() const
|
|
2042 |
\obsolete
|
|
2043 |
|
|
2044 |
Returns the matrix's determinant. Use determinant() instead.
|
|
2045 |
*/
|
|
2046 |
|
|
2047 |
|
|
2048 |
/*!
|
|
2049 |
\fn qreal QTransform::m11() const
|
|
2050 |
|
|
2051 |
Returns the horizontal scaling factor.
|
|
2052 |
|
|
2053 |
\sa scale(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
|
2054 |
Operations}
|
|
2055 |
*/
|
|
2056 |
|
|
2057 |
/*!
|
|
2058 |
\fn qreal QTransform::m12() const
|
|
2059 |
|
|
2060 |
Returns the vertical shearing factor.
|
|
2061 |
|
|
2062 |
\sa shear(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
|
2063 |
Operations}
|
|
2064 |
*/
|
|
2065 |
|
|
2066 |
/*!
|
|
2067 |
\fn qreal QTransform::m21() const
|
|
2068 |
|
|
2069 |
Returns the horizontal shearing factor.
|
|
2070 |
|
|
2071 |
\sa shear(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
|
2072 |
Operations}
|
|
2073 |
*/
|
|
2074 |
|
|
2075 |
/*!
|
|
2076 |
\fn qreal QTransform::m22() const
|
|
2077 |
|
|
2078 |
Returns the vertical scaling factor.
|
|
2079 |
|
|
2080 |
\sa scale(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
|
2081 |
Operations}
|
|
2082 |
*/
|
|
2083 |
|
|
2084 |
/*!
|
|
2085 |
\fn qreal QTransform::dx() const
|
|
2086 |
|
|
2087 |
Returns the horizontal translation factor.
|
|
2088 |
|
|
2089 |
\sa m31(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
|
2090 |
Operations}
|
|
2091 |
*/
|
|
2092 |
|
|
2093 |
/*!
|
|
2094 |
\fn qreal QTransform::dy() const
|
|
2095 |
|
|
2096 |
Returns the vertical translation factor.
|
|
2097 |
|
|
2098 |
\sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
|
2099 |
Operations}
|
|
2100 |
*/
|
|
2101 |
|
|
2102 |
|
|
2103 |
/*!
|
|
2104 |
\fn qreal QTransform::m13() const
|
|
2105 |
|
|
2106 |
Returns the horizontal projection factor.
|
|
2107 |
|
|
2108 |
\sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
|
2109 |
Operations}
|
|
2110 |
*/
|
|
2111 |
|
|
2112 |
|
|
2113 |
/*!
|
|
2114 |
\fn qreal QTransform::m23() const
|
|
2115 |
|
|
2116 |
Returns the vertical projection factor.
|
|
2117 |
|
|
2118 |
\sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
|
2119 |
Operations}
|
|
2120 |
*/
|
|
2121 |
|
|
2122 |
/*!
|
|
2123 |
\fn qreal QTransform::m31() const
|
|
2124 |
|
|
2125 |
Returns the horizontal translation factor.
|
|
2126 |
|
|
2127 |
\sa dx(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
|
2128 |
Operations}
|
|
2129 |
*/
|
|
2130 |
|
|
2131 |
/*!
|
|
2132 |
\fn qreal QTransform::m32() const
|
|
2133 |
|
|
2134 |
Returns the vertical translation factor.
|
|
2135 |
|
|
2136 |
\sa dy(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
|
2137 |
Operations}
|
|
2138 |
*/
|
|
2139 |
|
|
2140 |
/*!
|
|
2141 |
\fn qreal QTransform::m33() const
|
|
2142 |
|
|
2143 |
Returns the division factor.
|
|
2144 |
|
|
2145 |
\sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix
|
|
2146 |
Operations}
|
|
2147 |
*/
|
|
2148 |
|
|
2149 |
/*!
|
|
2150 |
\fn qreal QTransform::determinant() const
|
|
2151 |
|
|
2152 |
Returns the matrix's determinant.
|
|
2153 |
*/
|
|
2154 |
|
|
2155 |
/*!
|
|
2156 |
\fn bool QTransform::isIdentity() const
|
|
2157 |
|
|
2158 |
Returns true if the matrix is the identity matrix, otherwise
|
|
2159 |
returns false.
|
|
2160 |
|
|
2161 |
\sa reset()
|
|
2162 |
*/
|
|
2163 |
|
|
2164 |
/*!
|
|
2165 |
\fn bool QTransform::isAffine() const
|
|
2166 |
|
|
2167 |
Returns true if the matrix represent an affine transformation,
|
|
2168 |
otherwise returns false.
|
|
2169 |
*/
|
|
2170 |
|
|
2171 |
/*!
|
|
2172 |
\fn bool QTransform::isScaling() const
|
|
2173 |
|
|
2174 |
Returns true if the matrix represents a scaling
|
|
2175 |
transformation, otherwise returns false.
|
|
2176 |
|
|
2177 |
\sa reset()
|
|
2178 |
*/
|
|
2179 |
|
|
2180 |
/*!
|
|
2181 |
\fn bool QTransform::isRotating() const
|
|
2182 |
|
|
2183 |
Returns true if the matrix represents some kind of a
|
|
2184 |
rotating transformation, otherwise returns false.
|
|
2185 |
|
|
2186 |
\sa reset()
|
|
2187 |
*/
|
|
2188 |
|
|
2189 |
/*!
|
|
2190 |
\fn bool QTransform::isTranslating() const
|
|
2191 |
|
|
2192 |
Returns true if the matrix represents a translating
|
|
2193 |
transformation, otherwise returns false.
|
|
2194 |
|
|
2195 |
\sa reset()
|
|
2196 |
*/
|
|
2197 |
|
|
2198 |
/*!
|
|
2199 |
\fn bool qFuzzyCompare(const QTransform& t1, const QTransform& t2)
|
|
2200 |
|
|
2201 |
\relates QTransform
|
|
2202 |
\since 4.6
|
|
2203 |
|
|
2204 |
Returns true if \a t1 and \a t2 are equal, allowing for a small
|
|
2205 |
fuzziness factor for floating-point comparisons; false otherwise.
|
|
2206 |
*/
|
|
2207 |
|
|
2208 |
|
|
2209 |
// returns true if the transform is uniformly scaling
|
|
2210 |
// (same scale in x and y direction)
|
|
2211 |
// scale is set to the max of x and y scaling factors
|
|
2212 |
Q_GUI_EXPORT
|
|
2213 |
bool qt_scaleForTransform(const QTransform &transform, qreal *scale)
|
|
2214 |
{
|
|
2215 |
const QTransform::TransformationType type = transform.type();
|
|
2216 |
if (type <= QTransform::TxTranslate) {
|
|
2217 |
*scale = 1;
|
|
2218 |
return true;
|
|
2219 |
} else if (type == QTransform::TxScale) {
|
|
2220 |
const qreal xScale = qAbs(transform.m11());
|
|
2221 |
const qreal yScale = qAbs(transform.m22());
|
|
2222 |
*scale = qMax(xScale, yScale);
|
|
2223 |
return qFuzzyCompare(xScale, yScale);
|
|
2224 |
}
|
|
2225 |
|
|
2226 |
const qreal xScale = transform.m11() * transform.m11()
|
|
2227 |
+ transform.m21() * transform.m21();
|
|
2228 |
const qreal yScale = transform.m12() * transform.m12()
|
|
2229 |
+ transform.m22() * transform.m22();
|
|
2230 |
*scale = qSqrt(qMax(xScale, yScale));
|
|
2231 |
return type == QTransform::TxRotate && qFuzzyCompare(xScale, yScale);
|
|
2232 |
}
|
|
2233 |
|
|
2234 |
QT_END_NAMESPACE
|