|
1 /**************************************************************************** |
|
2 ** |
|
3 ** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies). |
|
4 ** All rights reserved. |
|
5 ** Contact: Nokia Corporation (qt-info@nokia.com) |
|
6 ** |
|
7 ** This file is part of the QtGui module of the Qt Toolkit. |
|
8 ** |
|
9 ** $QT_BEGIN_LICENSE:LGPL$ |
|
10 ** No Commercial Usage |
|
11 ** This file contains pre-release code and may not be distributed. |
|
12 ** You may use this file in accordance with the terms and conditions |
|
13 ** contained in the Technology Preview License Agreement accompanying |
|
14 ** this package. |
|
15 ** |
|
16 ** GNU Lesser General Public License Usage |
|
17 ** Alternatively, this file may be used under the terms of the GNU Lesser |
|
18 ** General Public License version 2.1 as published by the Free Software |
|
19 ** Foundation and appearing in the file LICENSE.LGPL included in the |
|
20 ** packaging of this file. Please review the following information to |
|
21 ** ensure the GNU Lesser General Public License version 2.1 requirements |
|
22 ** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. |
|
23 ** |
|
24 ** In addition, as a special exception, Nokia gives you certain additional |
|
25 ** rights. These rights are described in the Nokia Qt LGPL Exception |
|
26 ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. |
|
27 ** |
|
28 ** If you have questions regarding the use of this file, please contact |
|
29 ** Nokia at qt-info@nokia.com. |
|
30 ** |
|
31 ** |
|
32 ** |
|
33 ** |
|
34 ** |
|
35 ** |
|
36 ** |
|
37 ** |
|
38 ** $QT_END_LICENSE$ |
|
39 ** |
|
40 ****************************************************************************/ |
|
41 #include "qtransform.h" |
|
42 |
|
43 #include "qdatastream.h" |
|
44 #include "qdebug.h" |
|
45 #include "qmatrix.h" |
|
46 #include "qregion.h" |
|
47 #include "qpainterpath.h" |
|
48 #include "qvariant.h" |
|
49 #include <qmath.h> |
|
50 |
|
51 #include <private/qbezier_p.h> |
|
52 |
|
53 QT_BEGIN_NAMESPACE |
|
54 |
|
55 #define Q_NEAR_CLIP (sizeof(qreal) == sizeof(double) ? 0.000001 : 0.0001) |
|
56 |
|
57 #ifdef MAP |
|
58 # undef MAP |
|
59 #endif |
|
60 #define MAP(x, y, nx, ny) \ |
|
61 do { \ |
|
62 qreal FX_ = x; \ |
|
63 qreal FY_ = y; \ |
|
64 switch(t) { \ |
|
65 case TxNone: \ |
|
66 nx = FX_; \ |
|
67 ny = FY_; \ |
|
68 break; \ |
|
69 case TxTranslate: \ |
|
70 nx = FX_ + affine._dx; \ |
|
71 ny = FY_ + affine._dy; \ |
|
72 break; \ |
|
73 case TxScale: \ |
|
74 nx = affine._m11 * FX_ + affine._dx; \ |
|
75 ny = affine._m22 * FY_ + affine._dy; \ |
|
76 break; \ |
|
77 case TxRotate: \ |
|
78 case TxShear: \ |
|
79 case TxProject: \ |
|
80 nx = affine._m11 * FX_ + affine._m21 * FY_ + affine._dx; \ |
|
81 ny = affine._m12 * FX_ + affine._m22 * FY_ + affine._dy; \ |
|
82 if (t == TxProject) { \ |
|
83 qreal w = (m_13 * FX_ + m_23 * FY_ + m_33); \ |
|
84 if (w < qreal(Q_NEAR_CLIP)) w = qreal(Q_NEAR_CLIP); \ |
|
85 w = 1./w; \ |
|
86 nx *= w; \ |
|
87 ny *= w; \ |
|
88 } \ |
|
89 } \ |
|
90 } while (0) |
|
91 |
|
92 /*! |
|
93 \class QTransform |
|
94 \brief The QTransform class specifies 2D transformations of a coordinate system. |
|
95 \since 4.3 |
|
96 \ingroup painting |
|
97 |
|
98 A transformation specifies how to translate, scale, shear, rotate |
|
99 or project the coordinate system, and is typically used when |
|
100 rendering graphics. |
|
101 |
|
102 QTransform differs from QMatrix in that it is a true 3x3 matrix, |
|
103 allowing perspective transformations. QTransform's toAffine() |
|
104 method allows casting QTransform to QMatrix. If a perspective |
|
105 transformation has been specified on the matrix, then the |
|
106 conversion will cause loss of data. |
|
107 |
|
108 QTransform is the recommended transformation class in Qt. |
|
109 |
|
110 A QTransform object can be built using the setMatrix(), scale(), |
|
111 rotate(), translate() and shear() functions. Alternatively, it |
|
112 can be built by applying \l {QTransform#Basic Matrix |
|
113 Operations}{basic matrix operations}. The matrix can also be |
|
114 defined when constructed, and it can be reset to the identity |
|
115 matrix (the default) using the reset() function. |
|
116 |
|
117 The QTransform class supports mapping of graphic primitives: A given |
|
118 point, line, polygon, region, or painter path can be mapped to the |
|
119 coordinate system defined by \e this matrix using the map() |
|
120 function. In case of a rectangle, its coordinates can be |
|
121 transformed using the mapRect() function. A rectangle can also be |
|
122 transformed into a \e polygon (mapped to the coordinate system |
|
123 defined by \e this matrix), using the mapToPolygon() function. |
|
124 |
|
125 QTransform provides the isIdentity() function which returns true if |
|
126 the matrix is the identity matrix, and the isInvertible() function |
|
127 which returns true if the matrix is non-singular (i.e. AB = BA = |
|
128 I). The inverted() function returns an inverted copy of \e this |
|
129 matrix if it is invertible (otherwise it returns the identity |
|
130 matrix), and adjoint() returns the matrix's classical adjoint. |
|
131 In addition, QTransform provides the determinant() function which |
|
132 returns the matrix's determinant. |
|
133 |
|
134 Finally, the QTransform class supports matrix multiplication, addition |
|
135 and subtraction, and objects of the class can be streamed as well |
|
136 as compared. |
|
137 |
|
138 \tableofcontents |
|
139 |
|
140 \section1 Rendering Graphics |
|
141 |
|
142 When rendering graphics, the matrix defines the transformations |
|
143 but the actual transformation is performed by the drawing routines |
|
144 in QPainter. |
|
145 |
|
146 By default, QPainter operates on the associated device's own |
|
147 coordinate system. The standard coordinate system of a |
|
148 QPaintDevice has its origin located at the top-left position. The |
|
149 \e x values increase to the right; \e y values increase |
|
150 downward. For a complete description, see the \l {The Coordinate |
|
151 System}{coordinate system} documentation. |
|
152 |
|
153 QPainter has functions to translate, scale, shear and rotate the |
|
154 coordinate system without using a QTransform. For example: |
|
155 |
|
156 \table 100% |
|
157 \row |
|
158 \o \inlineimage qtransform-simpletransformation.png |
|
159 \o |
|
160 \snippet doc/src/snippets/transform/main.cpp 0 |
|
161 \endtable |
|
162 |
|
163 Although these functions are very convenient, it can be more |
|
164 efficient to build a QTransform and call QPainter::setTransform() if you |
|
165 want to perform more than a single transform operation. For |
|
166 example: |
|
167 |
|
168 \table 100% |
|
169 \row |
|
170 \o \inlineimage qtransform-combinedtransformation.png |
|
171 \o |
|
172 \snippet doc/src/snippets/transform/main.cpp 1 |
|
173 \endtable |
|
174 |
|
175 \section1 Basic Matrix Operations |
|
176 |
|
177 \image qtransform-representation.png |
|
178 |
|
179 A QTransform object contains a 3 x 3 matrix. The \c m31 (\c dx) and |
|
180 \c m32 (\c dy) elements specify horizontal and vertical translation. |
|
181 The \c m11 and \c m22 elements specify horizontal and vertical scaling. |
|
182 The \c m21 and \c m12 elements specify horizontal and vertical \e shearing. |
|
183 And finally, the \c m13 and \c m23 elements specify horizontal and vertical |
|
184 projection, with \c m33 as an additional projection factor. |
|
185 |
|
186 QTransform transforms a point in the plane to another point using the |
|
187 following formulas: |
|
188 |
|
189 \snippet doc/src/snippets/code/src_gui_painting_qtransform.cpp 0 |
|
190 |
|
191 The point \e (x, y) is the original point, and \e (x', y') is the |
|
192 transformed point. \e (x', y') can be transformed back to \e (x, |
|
193 y) by performing the same operation on the inverted() matrix. |
|
194 |
|
195 The various matrix elements can be set when constructing the |
|
196 matrix, or by using the setMatrix() function later on. They can also |
|
197 be manipulated using the translate(), rotate(), scale() and |
|
198 shear() convenience functions. The currently set values can be |
|
199 retrieved using the m11(), m12(), m13(), m21(), m22(), m23(), |
|
200 m31(), m32(), m33(), dx() and dy() functions. |
|
201 |
|
202 Translation is the simplest transformation. Setting \c dx and \c |
|
203 dy will move the coordinate system \c dx units along the X axis |
|
204 and \c dy units along the Y axis. Scaling can be done by setting |
|
205 \c m11 and \c m22. For example, setting \c m11 to 2 and \c m22 to |
|
206 1.5 will double the height and increase the width by 50%. The |
|
207 identity matrix has \c m11, \c m22, and \c m33 set to 1 (all others are set |
|
208 to 0) mapping a point to itself. Shearing is controlled by \c m12 |
|
209 and \c m21. Setting these elements to values different from zero |
|
210 will twist the coordinate system. Rotation is achieved by |
|
211 setting both the shearing factors and the scaling factors. Perspective |
|
212 transformation is achieved by setting both the projection factors and |
|
213 the scaling factors. |
|
214 |
|
215 Here's the combined transformations example using basic matrix |
|
216 operations: |
|
217 |
|
218 \table 100% |
|
219 \row |
|
220 \o \inlineimage qtransform-combinedtransformation2.png |
|
221 \o |
|
222 \snippet doc/src/snippets/transform/main.cpp 2 |
|
223 \endtable |
|
224 |
|
225 \sa QPainter, {The Coordinate System}, {demos/affine}{Affine |
|
226 Transformations Demo}, {Transformations Example} |
|
227 */ |
|
228 |
|
229 /*! |
|
230 \enum QTransform::TransformationType |
|
231 |
|
232 \value TxNone |
|
233 \value TxTranslate |
|
234 \value TxScale |
|
235 \value TxRotate |
|
236 \value TxShear |
|
237 \value TxProject |
|
238 */ |
|
239 |
|
240 /*! |
|
241 \fn QTransform::QTransform(Qt::Initialization) |
|
242 \internal |
|
243 */ |
|
244 |
|
245 /*! |
|
246 Constructs an identity matrix. |
|
247 |
|
248 All elements are set to zero except \c m11 and \c m22 (specifying |
|
249 the scale) and \c m13 which are set to 1. |
|
250 |
|
251 \sa reset() |
|
252 */ |
|
253 QTransform::QTransform() |
|
254 : affine(true) |
|
255 , m_13(0), m_23(0), m_33(1) |
|
256 , m_type(TxNone) |
|
257 , m_dirty(TxNone) |
|
258 { |
|
259 } |
|
260 |
|
261 /*! |
|
262 \fn QTransform::QTransform(qreal m11, qreal m12, qreal m13, qreal m21, qreal m22, qreal m23, qreal m31, qreal m32, qreal m33) |
|
263 |
|
264 Constructs a matrix with the elements, \a m11, \a m12, \a m13, |
|
265 \a m21, \a m22, \a m23, \a m31, \a m32, \a m33. |
|
266 |
|
267 \sa setMatrix() |
|
268 */ |
|
269 QTransform::QTransform(qreal h11, qreal h12, qreal h13, |
|
270 qreal h21, qreal h22, qreal h23, |
|
271 qreal h31, qreal h32, qreal h33) |
|
272 : affine(h11, h12, h21, h22, h31, h32, true) |
|
273 , m_13(h13), m_23(h23), m_33(h33) |
|
274 , m_type(TxNone) |
|
275 , m_dirty(TxProject) |
|
276 { |
|
277 } |
|
278 |
|
279 /*! |
|
280 \fn QTransform::QTransform(qreal m11, qreal m12, qreal m21, qreal m22, qreal dx, qreal dy) |
|
281 |
|
282 Constructs a matrix with the elements, \a m11, \a m12, \a m21, \a m22, \a dx and \a dy. |
|
283 |
|
284 \sa setMatrix() |
|
285 */ |
|
286 QTransform::QTransform(qreal h11, qreal h12, qreal h21, |
|
287 qreal h22, qreal dx, qreal dy) |
|
288 : affine(h11, h12, h21, h22, dx, dy, true) |
|
289 , m_13(0), m_23(0), m_33(1) |
|
290 , m_type(TxNone) |
|
291 , m_dirty(TxShear) |
|
292 { |
|
293 } |
|
294 |
|
295 /*! |
|
296 \fn QTransform::QTransform(const QMatrix &matrix) |
|
297 |
|
298 Constructs a matrix that is a copy of the given \a matrix. |
|
299 Note that the \c m13, \c m23, and \c m33 elements are set to 0, 0, |
|
300 and 1 respectively. |
|
301 */ |
|
302 QTransform::QTransform(const QMatrix &mtx) |
|
303 : affine(mtx._m11, mtx._m12, mtx._m21, mtx._m22, mtx._dx, mtx._dy, true), |
|
304 m_13(0), m_23(0), m_33(1) |
|
305 , m_type(TxNone) |
|
306 , m_dirty(TxShear) |
|
307 { |
|
308 } |
|
309 |
|
310 /*! |
|
311 Returns the adjoint of this matrix. |
|
312 */ |
|
313 QTransform QTransform::adjoint() const |
|
314 { |
|
315 qreal h11, h12, h13, |
|
316 h21, h22, h23, |
|
317 h31, h32, h33; |
|
318 h11 = affine._m22*m_33 - m_23*affine._dy; |
|
319 h21 = m_23*affine._dx - affine._m21*m_33; |
|
320 h31 = affine._m21*affine._dy - affine._m22*affine._dx; |
|
321 h12 = m_13*affine._dy - affine._m12*m_33; |
|
322 h22 = affine._m11*m_33 - m_13*affine._dx; |
|
323 h32 = affine._m12*affine._dx - affine._m11*affine._dy; |
|
324 h13 = affine._m12*m_23 - m_13*affine._m22; |
|
325 h23 = m_13*affine._m21 - affine._m11*m_23; |
|
326 h33 = affine._m11*affine._m22 - affine._m12*affine._m21; |
|
327 |
|
328 return QTransform(h11, h12, h13, |
|
329 h21, h22, h23, |
|
330 h31, h32, h33, true); |
|
331 } |
|
332 |
|
333 /*! |
|
334 Returns the transpose of this matrix. |
|
335 */ |
|
336 QTransform QTransform::transposed() const |
|
337 { |
|
338 QTransform t(affine._m11, affine._m21, affine._dx, |
|
339 affine._m12, affine._m22, affine._dy, |
|
340 m_13, m_23, m_33, true); |
|
341 t.m_type = m_type; |
|
342 t.m_dirty = m_dirty; |
|
343 return t; |
|
344 } |
|
345 |
|
346 /*! |
|
347 Returns an inverted copy of this matrix. |
|
348 |
|
349 If the matrix is singular (not invertible), the returned matrix is |
|
350 the identity matrix. If \a invertible is valid (i.e. not 0), its |
|
351 value is set to true if the matrix is invertible, otherwise it is |
|
352 set to false. |
|
353 |
|
354 \sa isInvertible() |
|
355 */ |
|
356 QTransform QTransform::inverted(bool *invertible) const |
|
357 { |
|
358 QTransform invert(true); |
|
359 bool inv = true; |
|
360 |
|
361 switch(inline_type()) { |
|
362 case TxNone: |
|
363 break; |
|
364 case TxTranslate: |
|
365 invert.affine._dx = -affine._dx; |
|
366 invert.affine._dy = -affine._dy; |
|
367 break; |
|
368 case TxScale: |
|
369 inv = !qFuzzyIsNull(affine._m11); |
|
370 inv &= !qFuzzyIsNull(affine._m22); |
|
371 if (inv) { |
|
372 invert.affine._m11 = 1. / affine._m11; |
|
373 invert.affine._m22 = 1. / affine._m22; |
|
374 invert.affine._dx = -affine._dx * invert.affine._m11; |
|
375 invert.affine._dy = -affine._dy * invert.affine._m22; |
|
376 } |
|
377 break; |
|
378 case TxRotate: |
|
379 case TxShear: |
|
380 invert.affine = affine.inverted(&inv); |
|
381 break; |
|
382 default: |
|
383 // general case |
|
384 qreal det = determinant(); |
|
385 inv = !qFuzzyIsNull(det); |
|
386 if (inv) |
|
387 invert = adjoint() / det; |
|
388 break; |
|
389 } |
|
390 |
|
391 if (invertible) |
|
392 *invertible = inv; |
|
393 |
|
394 if (inv) { |
|
395 // inverting doesn't change the type |
|
396 invert.m_type = m_type; |
|
397 invert.m_dirty = m_dirty; |
|
398 } |
|
399 |
|
400 return invert; |
|
401 } |
|
402 |
|
403 /*! |
|
404 Moves the coordinate system \a dx along the x axis and \a dy along |
|
405 the y axis, and returns a reference to the matrix. |
|
406 |
|
407 \sa setMatrix() |
|
408 */ |
|
409 QTransform &QTransform::translate(qreal dx, qreal dy) |
|
410 { |
|
411 if (dx == 0 && dy == 0) |
|
412 return *this; |
|
413 |
|
414 switch(inline_type()) { |
|
415 case TxNone: |
|
416 affine._dx = dx; |
|
417 affine._dy = dy; |
|
418 break; |
|
419 case TxTranslate: |
|
420 affine._dx += dx; |
|
421 affine._dy += dy; |
|
422 break; |
|
423 case TxScale: |
|
424 affine._dx += dx*affine._m11; |
|
425 affine._dy += dy*affine._m22; |
|
426 break; |
|
427 case TxProject: |
|
428 m_33 += dx*m_13 + dy*m_23; |
|
429 // Fall through |
|
430 case TxShear: |
|
431 case TxRotate: |
|
432 affine._dx += dx*affine._m11 + dy*affine._m21; |
|
433 affine._dy += dy*affine._m22 + dx*affine._m12; |
|
434 break; |
|
435 } |
|
436 if (m_dirty < TxTranslate) |
|
437 m_dirty = TxTranslate; |
|
438 return *this; |
|
439 } |
|
440 |
|
441 /*! |
|
442 Creates a matrix which corresponds to a translation of \a dx along |
|
443 the x axis and \a dy along the y axis. This is the same as |
|
444 QTransform().translate(dx, dy) but slightly faster. |
|
445 |
|
446 \since 4.5 |
|
447 */ |
|
448 QTransform QTransform::fromTranslate(qreal dx, qreal dy) |
|
449 { |
|
450 QTransform transform(1, 0, 0, 0, 1, 0, dx, dy, 1, true); |
|
451 if (dx == 0 && dy == 0) |
|
452 transform.m_type = TxNone; |
|
453 else |
|
454 transform.m_type = TxTranslate; |
|
455 transform.m_dirty = TxNone; |
|
456 return transform; |
|
457 } |
|
458 |
|
459 /*! |
|
460 Scales the coordinate system by \a sx horizontally and \a sy |
|
461 vertically, and returns a reference to the matrix. |
|
462 |
|
463 \sa setMatrix() |
|
464 */ |
|
465 QTransform & QTransform::scale(qreal sx, qreal sy) |
|
466 { |
|
467 if (sx == 1 && sy == 1) |
|
468 return *this; |
|
469 |
|
470 switch(inline_type()) { |
|
471 case TxNone: |
|
472 case TxTranslate: |
|
473 affine._m11 = sx; |
|
474 affine._m22 = sy; |
|
475 break; |
|
476 case TxProject: |
|
477 m_13 *= sx; |
|
478 m_23 *= sy; |
|
479 // fall through |
|
480 case TxRotate: |
|
481 case TxShear: |
|
482 affine._m12 *= sx; |
|
483 affine._m21 *= sy; |
|
484 // fall through |
|
485 case TxScale: |
|
486 affine._m11 *= sx; |
|
487 affine._m22 *= sy; |
|
488 break; |
|
489 } |
|
490 if (m_dirty < TxScale) |
|
491 m_dirty = TxScale; |
|
492 return *this; |
|
493 } |
|
494 |
|
495 /*! |
|
496 Creates a matrix which corresponds to a scaling of |
|
497 \a sx horizontally and \a sy vertically. |
|
498 This is the same as QTransform().scale(sx, sy) but slightly faster. |
|
499 |
|
500 \since 4.5 |
|
501 */ |
|
502 QTransform QTransform::fromScale(qreal sx, qreal sy) |
|
503 { |
|
504 QTransform transform(sx, 0, 0, 0, sy, 0, 0, 0, 1, true); |
|
505 if (sx == 1. && sy == 1.) |
|
506 transform.m_type = TxNone; |
|
507 else |
|
508 transform.m_type = TxScale; |
|
509 transform.m_dirty = TxNone; |
|
510 return transform; |
|
511 } |
|
512 |
|
513 /*! |
|
514 Shears the coordinate system by \a sh horizontally and \a sv |
|
515 vertically, and returns a reference to the matrix. |
|
516 |
|
517 \sa setMatrix() |
|
518 */ |
|
519 QTransform & QTransform::shear(qreal sh, qreal sv) |
|
520 { |
|
521 if (sh == 0 && sv == 0) |
|
522 return *this; |
|
523 |
|
524 switch(inline_type()) { |
|
525 case TxNone: |
|
526 case TxTranslate: |
|
527 affine._m12 = sv; |
|
528 affine._m21 = sh; |
|
529 break; |
|
530 case TxScale: |
|
531 affine._m12 = sv*affine._m22; |
|
532 affine._m21 = sh*affine._m11; |
|
533 break; |
|
534 case TxProject: { |
|
535 qreal tm13 = sv*m_23; |
|
536 qreal tm23 = sh*m_13; |
|
537 m_13 += tm13; |
|
538 m_23 += tm23; |
|
539 } |
|
540 // fall through |
|
541 case TxRotate: |
|
542 case TxShear: { |
|
543 qreal tm11 = sv*affine._m21; |
|
544 qreal tm22 = sh*affine._m12; |
|
545 qreal tm12 = sv*affine._m22; |
|
546 qreal tm21 = sh*affine._m11; |
|
547 affine._m11 += tm11; affine._m12 += tm12; |
|
548 affine._m21 += tm21; affine._m22 += tm22; |
|
549 break; |
|
550 } |
|
551 } |
|
552 if (m_dirty < TxShear) |
|
553 m_dirty = TxShear; |
|
554 return *this; |
|
555 } |
|
556 |
|
557 const qreal deg2rad = qreal(0.017453292519943295769); // pi/180 |
|
558 const qreal inv_dist_to_plane = 1. / 1024.; |
|
559 |
|
560 /*! |
|
561 \fn QTransform &QTransform::rotate(qreal angle, Qt::Axis axis) |
|
562 |
|
563 Rotates the coordinate system counterclockwise by the given \a angle |
|
564 about the specified \a axis and returns a reference to the matrix. |
|
565 |
|
566 Note that if you apply a QTransform to a point defined in widget |
|
567 coordinates, the direction of the rotation will be clockwise |
|
568 because the y-axis points downwards. |
|
569 |
|
570 The angle is specified in degrees. |
|
571 |
|
572 \sa setMatrix() |
|
573 */ |
|
574 QTransform & QTransform::rotate(qreal a, Qt::Axis axis) |
|
575 { |
|
576 if (a == 0) |
|
577 return *this; |
|
578 |
|
579 qreal sina = 0; |
|
580 qreal cosa = 0; |
|
581 if (a == 90. || a == -270.) |
|
582 sina = 1.; |
|
583 else if (a == 270. || a == -90.) |
|
584 sina = -1.; |
|
585 else if (a == 180.) |
|
586 cosa = -1.; |
|
587 else{ |
|
588 qreal b = deg2rad*a; // convert to radians |
|
589 sina = qSin(b); // fast and convenient |
|
590 cosa = qCos(b); |
|
591 } |
|
592 |
|
593 if (axis == Qt::ZAxis) { |
|
594 switch(inline_type()) { |
|
595 case TxNone: |
|
596 case TxTranslate: |
|
597 affine._m11 = cosa; |
|
598 affine._m12 = sina; |
|
599 affine._m21 = -sina; |
|
600 affine._m22 = cosa; |
|
601 break; |
|
602 case TxScale: { |
|
603 qreal tm11 = cosa*affine._m11; |
|
604 qreal tm12 = sina*affine._m22; |
|
605 qreal tm21 = -sina*affine._m11; |
|
606 qreal tm22 = cosa*affine._m22; |
|
607 affine._m11 = tm11; affine._m12 = tm12; |
|
608 affine._m21 = tm21; affine._m22 = tm22; |
|
609 break; |
|
610 } |
|
611 case TxProject: { |
|
612 qreal tm13 = cosa*m_13 + sina*m_23; |
|
613 qreal tm23 = -sina*m_13 + cosa*m_23; |
|
614 m_13 = tm13; |
|
615 m_23 = tm23; |
|
616 // fall through |
|
617 } |
|
618 case TxRotate: |
|
619 case TxShear: { |
|
620 qreal tm11 = cosa*affine._m11 + sina*affine._m21; |
|
621 qreal tm12 = cosa*affine._m12 + sina*affine._m22; |
|
622 qreal tm21 = -sina*affine._m11 + cosa*affine._m21; |
|
623 qreal tm22 = -sina*affine._m12 + cosa*affine._m22; |
|
624 affine._m11 = tm11; affine._m12 = tm12; |
|
625 affine._m21 = tm21; affine._m22 = tm22; |
|
626 break; |
|
627 } |
|
628 } |
|
629 if (m_dirty < TxRotate) |
|
630 m_dirty = TxRotate; |
|
631 } else { |
|
632 QTransform result; |
|
633 if (axis == Qt::YAxis) { |
|
634 result.affine._m11 = cosa; |
|
635 result.m_13 = -sina * inv_dist_to_plane; |
|
636 } else { |
|
637 result.affine._m22 = cosa; |
|
638 result.m_23 = -sina * inv_dist_to_plane; |
|
639 } |
|
640 result.m_type = TxProject; |
|
641 *this = result * *this; |
|
642 } |
|
643 |
|
644 return *this; |
|
645 } |
|
646 |
|
647 /*! |
|
648 \fn QTransform & QTransform::rotateRadians(qreal angle, Qt::Axis axis) |
|
649 |
|
650 Rotates the coordinate system counterclockwise by the given \a angle |
|
651 about the specified \a axis and returns a reference to the matrix. |
|
652 |
|
653 Note that if you apply a QTransform to a point defined in widget |
|
654 coordinates, the direction of the rotation will be clockwise |
|
655 because the y-axis points downwards. |
|
656 |
|
657 The angle is specified in radians. |
|
658 |
|
659 \sa setMatrix() |
|
660 */ |
|
661 QTransform & QTransform::rotateRadians(qreal a, Qt::Axis axis) |
|
662 { |
|
663 qreal sina = qSin(a); |
|
664 qreal cosa = qCos(a); |
|
665 |
|
666 if (axis == Qt::ZAxis) { |
|
667 switch(inline_type()) { |
|
668 case TxNone: |
|
669 case TxTranslate: |
|
670 affine._m11 = cosa; |
|
671 affine._m12 = sina; |
|
672 affine._m21 = -sina; |
|
673 affine._m22 = cosa; |
|
674 break; |
|
675 case TxScale: { |
|
676 qreal tm11 = cosa*affine._m11; |
|
677 qreal tm12 = sina*affine._m22; |
|
678 qreal tm21 = -sina*affine._m11; |
|
679 qreal tm22 = cosa*affine._m22; |
|
680 affine._m11 = tm11; affine._m12 = tm12; |
|
681 affine._m21 = tm21; affine._m22 = tm22; |
|
682 break; |
|
683 } |
|
684 case TxProject: { |
|
685 qreal tm13 = cosa*m_13 + sina*m_23; |
|
686 qreal tm23 = -sina*m_13 + cosa*m_23; |
|
687 m_13 = tm13; |
|
688 m_23 = tm23; |
|
689 // fall through |
|
690 } |
|
691 case TxRotate: |
|
692 case TxShear: { |
|
693 qreal tm11 = cosa*affine._m11 + sina*affine._m21; |
|
694 qreal tm12 = cosa*affine._m12 + sina*affine._m22; |
|
695 qreal tm21 = -sina*affine._m11 + cosa*affine._m21; |
|
696 qreal tm22 = -sina*affine._m12 + cosa*affine._m22; |
|
697 affine._m11 = tm11; affine._m12 = tm12; |
|
698 affine._m21 = tm21; affine._m22 = tm22; |
|
699 break; |
|
700 } |
|
701 } |
|
702 if (m_dirty < TxRotate) |
|
703 m_dirty = TxRotate; |
|
704 } else { |
|
705 QTransform result; |
|
706 if (axis == Qt::YAxis) { |
|
707 result.affine._m11 = cosa; |
|
708 result.m_13 = -sina * inv_dist_to_plane; |
|
709 } else { |
|
710 result.affine._m22 = cosa; |
|
711 result.m_23 = -sina * inv_dist_to_plane; |
|
712 } |
|
713 result.m_type = TxProject; |
|
714 *this = result * *this; |
|
715 } |
|
716 return *this; |
|
717 } |
|
718 |
|
719 /*! |
|
720 \fn bool QTransform::operator==(const QTransform &matrix) const |
|
721 Returns true if this matrix is equal to the given \a matrix, |
|
722 otherwise returns false. |
|
723 */ |
|
724 bool QTransform::operator==(const QTransform &o) const |
|
725 { |
|
726 return affine._m11 == o.affine._m11 && |
|
727 affine._m12 == o.affine._m12 && |
|
728 affine._m21 == o.affine._m21 && |
|
729 affine._m22 == o.affine._m22 && |
|
730 affine._dx == o.affine._dx && |
|
731 affine._dy == o.affine._dy && |
|
732 m_13 == o.m_13 && |
|
733 m_23 == o.m_23 && |
|
734 m_33 == o.m_33; |
|
735 } |
|
736 |
|
737 /*! |
|
738 \fn bool QTransform::operator!=(const QTransform &matrix) const |
|
739 Returns true if this matrix is not equal to the given \a matrix, |
|
740 otherwise returns false. |
|
741 */ |
|
742 bool QTransform::operator!=(const QTransform &o) const |
|
743 { |
|
744 return !operator==(o); |
|
745 } |
|
746 |
|
747 /*! |
|
748 \fn QTransform & QTransform::operator*=(const QTransform &matrix) |
|
749 \overload |
|
750 |
|
751 Returns the result of multiplying this matrix by the given \a |
|
752 matrix. |
|
753 */ |
|
754 QTransform & QTransform::operator*=(const QTransform &o) |
|
755 { |
|
756 const TransformationType otherType = o.inline_type(); |
|
757 if (otherType == TxNone) |
|
758 return *this; |
|
759 |
|
760 const TransformationType thisType = inline_type(); |
|
761 if (thisType == TxNone) |
|
762 return operator=(o); |
|
763 |
|
764 TransformationType t = qMax(thisType, otherType); |
|
765 switch(t) { |
|
766 case TxNone: |
|
767 break; |
|
768 case TxTranslate: |
|
769 affine._dx += o.affine._dx; |
|
770 affine._dy += o.affine._dy; |
|
771 break; |
|
772 case TxScale: |
|
773 { |
|
774 qreal m11 = affine._m11*o.affine._m11; |
|
775 qreal m22 = affine._m22*o.affine._m22; |
|
776 |
|
777 qreal m31 = affine._dx*o.affine._m11 + o.affine._dx; |
|
778 qreal m32 = affine._dy*o.affine._m22 + o.affine._dy; |
|
779 |
|
780 affine._m11 = m11; |
|
781 affine._m22 = m22; |
|
782 affine._dx = m31; affine._dy = m32; |
|
783 break; |
|
784 } |
|
785 case TxRotate: |
|
786 case TxShear: |
|
787 { |
|
788 qreal m11 = affine._m11*o.affine._m11 + affine._m12*o.affine._m21; |
|
789 qreal m12 = affine._m11*o.affine._m12 + affine._m12*o.affine._m22; |
|
790 |
|
791 qreal m21 = affine._m21*o.affine._m11 + affine._m22*o.affine._m21; |
|
792 qreal m22 = affine._m21*o.affine._m12 + affine._m22*o.affine._m22; |
|
793 |
|
794 qreal m31 = affine._dx*o.affine._m11 + affine._dy*o.affine._m21 + o.affine._dx; |
|
795 qreal m32 = affine._dx*o.affine._m12 + affine._dy*o.affine._m22 + o.affine._dy; |
|
796 |
|
797 affine._m11 = m11; affine._m12 = m12; |
|
798 affine._m21 = m21; affine._m22 = m22; |
|
799 affine._dx = m31; affine._dy = m32; |
|
800 break; |
|
801 } |
|
802 case TxProject: |
|
803 { |
|
804 qreal m11 = affine._m11*o.affine._m11 + affine._m12*o.affine._m21 + m_13*o.affine._dx; |
|
805 qreal m12 = affine._m11*o.affine._m12 + affine._m12*o.affine._m22 + m_13*o.affine._dy; |
|
806 qreal m13 = affine._m11*o.m_13 + affine._m12*o.m_23 + m_13*o.m_33; |
|
807 |
|
808 qreal m21 = affine._m21*o.affine._m11 + affine._m22*o.affine._m21 + m_23*o.affine._dx; |
|
809 qreal m22 = affine._m21*o.affine._m12 + affine._m22*o.affine._m22 + m_23*o.affine._dy; |
|
810 qreal m23 = affine._m21*o.m_13 + affine._m22*o.m_23 + m_23*o.m_33; |
|
811 |
|
812 qreal m31 = affine._dx*o.affine._m11 + affine._dy*o.affine._m21 + m_33*o.affine._dx; |
|
813 qreal m32 = affine._dx*o.affine._m12 + affine._dy*o.affine._m22 + m_33*o.affine._dy; |
|
814 qreal m33 = affine._dx*o.m_13 + affine._dy*o.m_23 + m_33*o.m_33; |
|
815 |
|
816 affine._m11 = m11; affine._m12 = m12; m_13 = m13; |
|
817 affine._m21 = m21; affine._m22 = m22; m_23 = m23; |
|
818 affine._dx = m31; affine._dy = m32; m_33 = m33; |
|
819 } |
|
820 } |
|
821 |
|
822 m_dirty = t; |
|
823 m_type = t; |
|
824 |
|
825 return *this; |
|
826 } |
|
827 |
|
828 /*! |
|
829 \fn QTransform QTransform::operator*(const QTransform &matrix) const |
|
830 Returns the result of multiplying this matrix by the given \a |
|
831 matrix. |
|
832 |
|
833 Note that matrix multiplication is not commutative, i.e. a*b != |
|
834 b*a. |
|
835 */ |
|
836 QTransform QTransform::operator*(const QTransform &m) const |
|
837 { |
|
838 const TransformationType otherType = m.inline_type(); |
|
839 if (otherType == TxNone) |
|
840 return *this; |
|
841 |
|
842 const TransformationType thisType = inline_type(); |
|
843 if (thisType == TxNone) |
|
844 return m; |
|
845 |
|
846 QTransform t(true); |
|
847 TransformationType type = qMax(thisType, otherType); |
|
848 switch(type) { |
|
849 case TxNone: |
|
850 break; |
|
851 case TxTranslate: |
|
852 t.affine._dx = affine._dx + m.affine._dx; |
|
853 t.affine._dy += affine._dy + m.affine._dy; |
|
854 break; |
|
855 case TxScale: |
|
856 { |
|
857 qreal m11 = affine._m11*m.affine._m11; |
|
858 qreal m22 = affine._m22*m.affine._m22; |
|
859 |
|
860 qreal m31 = affine._dx*m.affine._m11 + m.affine._dx; |
|
861 qreal m32 = affine._dy*m.affine._m22 + m.affine._dy; |
|
862 |
|
863 t.affine._m11 = m11; |
|
864 t.affine._m22 = m22; |
|
865 t.affine._dx = m31; t.affine._dy = m32; |
|
866 break; |
|
867 } |
|
868 case TxRotate: |
|
869 case TxShear: |
|
870 { |
|
871 qreal m11 = affine._m11*m.affine._m11 + affine._m12*m.affine._m21; |
|
872 qreal m12 = affine._m11*m.affine._m12 + affine._m12*m.affine._m22; |
|
873 |
|
874 qreal m21 = affine._m21*m.affine._m11 + affine._m22*m.affine._m21; |
|
875 qreal m22 = affine._m21*m.affine._m12 + affine._m22*m.affine._m22; |
|
876 |
|
877 qreal m31 = affine._dx*m.affine._m11 + affine._dy*m.affine._m21 + m.affine._dx; |
|
878 qreal m32 = affine._dx*m.affine._m12 + affine._dy*m.affine._m22 + m.affine._dy; |
|
879 |
|
880 t.affine._m11 = m11; t.affine._m12 = m12; |
|
881 t.affine._m21 = m21; t.affine._m22 = m22; |
|
882 t.affine._dx = m31; t.affine._dy = m32; |
|
883 break; |
|
884 } |
|
885 case TxProject: |
|
886 { |
|
887 qreal m11 = affine._m11*m.affine._m11 + affine._m12*m.affine._m21 + m_13*m.affine._dx; |
|
888 qreal m12 = affine._m11*m.affine._m12 + affine._m12*m.affine._m22 + m_13*m.affine._dy; |
|
889 qreal m13 = affine._m11*m.m_13 + affine._m12*m.m_23 + m_13*m.m_33; |
|
890 |
|
891 qreal m21 = affine._m21*m.affine._m11 + affine._m22*m.affine._m21 + m_23*m.affine._dx; |
|
892 qreal m22 = affine._m21*m.affine._m12 + affine._m22*m.affine._m22 + m_23*m.affine._dy; |
|
893 qreal m23 = affine._m21*m.m_13 + affine._m22*m.m_23 + m_23*m.m_33; |
|
894 |
|
895 qreal m31 = affine._dx*m.affine._m11 + affine._dy*m.affine._m21 + m_33*m.affine._dx; |
|
896 qreal m32 = affine._dx*m.affine._m12 + affine._dy*m.affine._m22 + m_33*m.affine._dy; |
|
897 qreal m33 = affine._dx*m.m_13 + affine._dy*m.m_23 + m_33*m.m_33; |
|
898 |
|
899 t.affine._m11 = m11; t.affine._m12 = m12; t.m_13 = m13; |
|
900 t.affine._m21 = m21; t.affine._m22 = m22; t.m_23 = m23; |
|
901 t.affine._dx = m31; t.affine._dy = m32; t.m_33 = m33; |
|
902 } |
|
903 } |
|
904 |
|
905 t.m_dirty = type; |
|
906 t.m_type = type; |
|
907 |
|
908 return t; |
|
909 } |
|
910 |
|
911 /*! |
|
912 \fn QTransform & QTransform::operator*=(qreal scalar) |
|
913 \overload |
|
914 |
|
915 Returns the result of performing an element-wise multiplication of this |
|
916 matrix with the given \a scalar. |
|
917 */ |
|
918 |
|
919 /*! |
|
920 \fn QTransform & QTransform::operator/=(qreal scalar) |
|
921 \overload |
|
922 |
|
923 Returns the result of performing an element-wise division of this |
|
924 matrix by the given \a scalar. |
|
925 */ |
|
926 |
|
927 /*! |
|
928 \fn QTransform & QTransform::operator+=(qreal scalar) |
|
929 \overload |
|
930 |
|
931 Returns the matrix obtained by adding the given \a scalar to each |
|
932 element of this matrix. |
|
933 */ |
|
934 |
|
935 /*! |
|
936 \fn QTransform & QTransform::operator-=(qreal scalar) |
|
937 \overload |
|
938 |
|
939 Returns the matrix obtained by subtracting the given \a scalar from each |
|
940 element of this matrix. |
|
941 */ |
|
942 |
|
943 /*! |
|
944 Assigns the given \a matrix's values to this matrix. |
|
945 */ |
|
946 QTransform & QTransform::operator=(const QTransform &matrix) |
|
947 { |
|
948 affine._m11 = matrix.affine._m11; |
|
949 affine._m12 = matrix.affine._m12; |
|
950 affine._m21 = matrix.affine._m21; |
|
951 affine._m22 = matrix.affine._m22; |
|
952 affine._dx = matrix.affine._dx; |
|
953 affine._dy = matrix.affine._dy; |
|
954 m_13 = matrix.m_13; |
|
955 m_23 = matrix.m_23; |
|
956 m_33 = matrix.m_33; |
|
957 m_type = matrix.m_type; |
|
958 m_dirty = matrix.m_dirty; |
|
959 |
|
960 return *this; |
|
961 } |
|
962 |
|
963 /*! |
|
964 Resets the matrix to an identity matrix, i.e. all elements are set |
|
965 to zero, except \c m11 and \c m22 (specifying the scale) and \c m33 |
|
966 which are set to 1. |
|
967 |
|
968 \sa QTransform(), isIdentity(), {QTransform#Basic Matrix |
|
969 Operations}{Basic Matrix Operations} |
|
970 */ |
|
971 void QTransform::reset() |
|
972 { |
|
973 affine._m11 = affine._m22 = m_33 = 1.0; |
|
974 affine._m12 = m_13 = affine._m21 = m_23 = affine._dx = affine._dy = 0; |
|
975 m_type = TxNone; |
|
976 m_dirty = TxNone; |
|
977 } |
|
978 |
|
979 #ifndef QT_NO_DATASTREAM |
|
980 /*! |
|
981 \fn QDataStream &operator<<(QDataStream &stream, const QTransform &matrix) |
|
982 \since 4.3 |
|
983 \relates QTransform |
|
984 |
|
985 Writes the given \a matrix to the given \a stream and returns a |
|
986 reference to the stream. |
|
987 |
|
988 \sa {Format of the QDataStream Operators} |
|
989 */ |
|
990 QDataStream & operator<<(QDataStream &s, const QTransform &m) |
|
991 { |
|
992 s << double(m.m11()) |
|
993 << double(m.m12()) |
|
994 << double(m.m13()) |
|
995 << double(m.m21()) |
|
996 << double(m.m22()) |
|
997 << double(m.m23()) |
|
998 << double(m.m31()) |
|
999 << double(m.m32()) |
|
1000 << double(m.m33()); |
|
1001 return s; |
|
1002 } |
|
1003 |
|
1004 /*! |
|
1005 \fn QDataStream &operator>>(QDataStream &stream, QTransform &matrix) |
|
1006 \since 4.3 |
|
1007 \relates QTransform |
|
1008 |
|
1009 Reads the given \a matrix from the given \a stream and returns a |
|
1010 reference to the stream. |
|
1011 |
|
1012 \sa {Format of the QDataStream Operators} |
|
1013 */ |
|
1014 QDataStream & operator>>(QDataStream &s, QTransform &t) |
|
1015 { |
|
1016 double m11, m12, m13, |
|
1017 m21, m22, m23, |
|
1018 m31, m32, m33; |
|
1019 |
|
1020 s >> m11; |
|
1021 s >> m12; |
|
1022 s >> m13; |
|
1023 s >> m21; |
|
1024 s >> m22; |
|
1025 s >> m23; |
|
1026 s >> m31; |
|
1027 s >> m32; |
|
1028 s >> m33; |
|
1029 t.setMatrix(m11, m12, m13, |
|
1030 m21, m22, m23, |
|
1031 m31, m32, m33); |
|
1032 return s; |
|
1033 } |
|
1034 |
|
1035 #endif // QT_NO_DATASTREAM |
|
1036 |
|
1037 #ifndef QT_NO_DEBUG_STREAM |
|
1038 QDebug operator<<(QDebug dbg, const QTransform &m) |
|
1039 { |
|
1040 dbg.nospace() << "QTransform(" |
|
1041 << "11=" << m.m11() |
|
1042 << " 12=" << m.m12() |
|
1043 << " 13=" << m.m13() |
|
1044 << " 21=" << m.m21() |
|
1045 << " 22=" << m.m22() |
|
1046 << " 23=" << m.m23() |
|
1047 << " 31=" << m.m31() |
|
1048 << " 32=" << m.m32() |
|
1049 << " 33=" << m.m33() |
|
1050 << ')'; |
|
1051 return dbg.space(); |
|
1052 } |
|
1053 #endif |
|
1054 |
|
1055 /*! |
|
1056 \fn QPoint operator*(const QPoint &point, const QTransform &matrix) |
|
1057 \relates QTransform |
|
1058 |
|
1059 This is the same as \a{matrix}.map(\a{point}). |
|
1060 |
|
1061 \sa QTransform::map() |
|
1062 */ |
|
1063 QPoint QTransform::map(const QPoint &p) const |
|
1064 { |
|
1065 qreal fx = p.x(); |
|
1066 qreal fy = p.y(); |
|
1067 |
|
1068 qreal x = 0, y = 0; |
|
1069 |
|
1070 TransformationType t = inline_type(); |
|
1071 switch(t) { |
|
1072 case TxNone: |
|
1073 x = fx; |
|
1074 y = fy; |
|
1075 break; |
|
1076 case TxTranslate: |
|
1077 x = fx + affine._dx; |
|
1078 y = fy + affine._dy; |
|
1079 break; |
|
1080 case TxScale: |
|
1081 x = affine._m11 * fx + affine._dx; |
|
1082 y = affine._m22 * fy + affine._dy; |
|
1083 break; |
|
1084 case TxRotate: |
|
1085 case TxShear: |
|
1086 case TxProject: |
|
1087 x = affine._m11 * fx + affine._m21 * fy + affine._dx; |
|
1088 y = affine._m12 * fx + affine._m22 * fy + affine._dy; |
|
1089 if (t == TxProject) { |
|
1090 qreal w = 1./(m_13 * fx + m_23 * fy + m_33); |
|
1091 x *= w; |
|
1092 y *= w; |
|
1093 } |
|
1094 } |
|
1095 return QPoint(qRound(x), qRound(y)); |
|
1096 } |
|
1097 |
|
1098 |
|
1099 /*! |
|
1100 \fn QPointF operator*(const QPointF &point, const QTransform &matrix) |
|
1101 \relates QTransform |
|
1102 |
|
1103 Same as \a{matrix}.map(\a{point}). |
|
1104 |
|
1105 \sa QTransform::map() |
|
1106 */ |
|
1107 |
|
1108 /*! |
|
1109 \overload |
|
1110 |
|
1111 Creates and returns a QPointF object that is a copy of the given point, |
|
1112 \a p, mapped into the coordinate system defined by this matrix. |
|
1113 */ |
|
1114 QPointF QTransform::map(const QPointF &p) const |
|
1115 { |
|
1116 qreal fx = p.x(); |
|
1117 qreal fy = p.y(); |
|
1118 |
|
1119 qreal x = 0, y = 0; |
|
1120 |
|
1121 TransformationType t = inline_type(); |
|
1122 switch(t) { |
|
1123 case TxNone: |
|
1124 x = fx; |
|
1125 y = fy; |
|
1126 break; |
|
1127 case TxTranslate: |
|
1128 x = fx + affine._dx; |
|
1129 y = fy + affine._dy; |
|
1130 break; |
|
1131 case TxScale: |
|
1132 x = affine._m11 * fx + affine._dx; |
|
1133 y = affine._m22 * fy + affine._dy; |
|
1134 break; |
|
1135 case TxRotate: |
|
1136 case TxShear: |
|
1137 case TxProject: |
|
1138 x = affine._m11 * fx + affine._m21 * fy + affine._dx; |
|
1139 y = affine._m12 * fx + affine._m22 * fy + affine._dy; |
|
1140 if (t == TxProject) { |
|
1141 qreal w = 1./(m_13 * fx + m_23 * fy + m_33); |
|
1142 x *= w; |
|
1143 y *= w; |
|
1144 } |
|
1145 } |
|
1146 return QPointF(x, y); |
|
1147 } |
|
1148 |
|
1149 /*! |
|
1150 \fn QPoint QTransform::map(const QPoint &point) const |
|
1151 \overload |
|
1152 |
|
1153 Creates and returns a QPoint object that is a copy of the given \a |
|
1154 point, mapped into the coordinate system defined by this |
|
1155 matrix. Note that the transformed coordinates are rounded to the |
|
1156 nearest integer. |
|
1157 */ |
|
1158 |
|
1159 /*! |
|
1160 \fn QLineF operator*(const QLineF &line, const QTransform &matrix) |
|
1161 \relates QTransform |
|
1162 |
|
1163 This is the same as \a{matrix}.map(\a{line}). |
|
1164 |
|
1165 \sa QTransform::map() |
|
1166 */ |
|
1167 |
|
1168 /*! |
|
1169 \fn QLine operator*(const QLine &line, const QTransform &matrix) |
|
1170 \relates QTransform |
|
1171 |
|
1172 This is the same as \a{matrix}.map(\a{line}). |
|
1173 |
|
1174 \sa QTransform::map() |
|
1175 */ |
|
1176 |
|
1177 /*! |
|
1178 \overload |
|
1179 |
|
1180 Creates and returns a QLineF object that is a copy of the given line, |
|
1181 \a l, mapped into the coordinate system defined by this matrix. |
|
1182 */ |
|
1183 QLine QTransform::map(const QLine &l) const |
|
1184 { |
|
1185 qreal fx1 = l.x1(); |
|
1186 qreal fy1 = l.y1(); |
|
1187 qreal fx2 = l.x2(); |
|
1188 qreal fy2 = l.y2(); |
|
1189 |
|
1190 qreal x1 = 0, y1 = 0, x2 = 0, y2 = 0; |
|
1191 |
|
1192 TransformationType t = inline_type(); |
|
1193 switch(t) { |
|
1194 case TxNone: |
|
1195 x1 = fx1; |
|
1196 y1 = fy1; |
|
1197 x2 = fx2; |
|
1198 y2 = fy2; |
|
1199 break; |
|
1200 case TxTranslate: |
|
1201 x1 = fx1 + affine._dx; |
|
1202 y1 = fy1 + affine._dy; |
|
1203 x2 = fx2 + affine._dx; |
|
1204 y2 = fy2 + affine._dy; |
|
1205 break; |
|
1206 case TxScale: |
|
1207 x1 = affine._m11 * fx1 + affine._dx; |
|
1208 y1 = affine._m22 * fy1 + affine._dy; |
|
1209 x2 = affine._m11 * fx2 + affine._dx; |
|
1210 y2 = affine._m22 * fy2 + affine._dy; |
|
1211 break; |
|
1212 case TxRotate: |
|
1213 case TxShear: |
|
1214 case TxProject: |
|
1215 x1 = affine._m11 * fx1 + affine._m21 * fy1 + affine._dx; |
|
1216 y1 = affine._m12 * fx1 + affine._m22 * fy1 + affine._dy; |
|
1217 x2 = affine._m11 * fx2 + affine._m21 * fy2 + affine._dx; |
|
1218 y2 = affine._m12 * fx2 + affine._m22 * fy2 + affine._dy; |
|
1219 if (t == TxProject) { |
|
1220 qreal w = 1./(m_13 * fx1 + m_23 * fy1 + m_33); |
|
1221 x1 *= w; |
|
1222 y1 *= w; |
|
1223 w = 1./(m_13 * fx2 + m_23 * fy2 + m_33); |
|
1224 x2 *= w; |
|
1225 y2 *= w; |
|
1226 } |
|
1227 } |
|
1228 return QLine(qRound(x1), qRound(y1), qRound(x2), qRound(y2)); |
|
1229 } |
|
1230 |
|
1231 /*! |
|
1232 \overload |
|
1233 |
|
1234 \fn QLineF QTransform::map(const QLineF &line) const |
|
1235 |
|
1236 Creates and returns a QLine object that is a copy of the given \a |
|
1237 line, mapped into the coordinate system defined by this matrix. |
|
1238 Note that the transformed coordinates are rounded to the nearest |
|
1239 integer. |
|
1240 */ |
|
1241 |
|
1242 QLineF QTransform::map(const QLineF &l) const |
|
1243 { |
|
1244 qreal fx1 = l.x1(); |
|
1245 qreal fy1 = l.y1(); |
|
1246 qreal fx2 = l.x2(); |
|
1247 qreal fy2 = l.y2(); |
|
1248 |
|
1249 qreal x1 = 0, y1 = 0, x2 = 0, y2 = 0; |
|
1250 |
|
1251 TransformationType t = inline_type(); |
|
1252 switch(t) { |
|
1253 case TxNone: |
|
1254 x1 = fx1; |
|
1255 y1 = fy1; |
|
1256 x2 = fx2; |
|
1257 y2 = fy2; |
|
1258 break; |
|
1259 case TxTranslate: |
|
1260 x1 = fx1 + affine._dx; |
|
1261 y1 = fy1 + affine._dy; |
|
1262 x2 = fx2 + affine._dx; |
|
1263 y2 = fy2 + affine._dy; |
|
1264 break; |
|
1265 case TxScale: |
|
1266 x1 = affine._m11 * fx1 + affine._dx; |
|
1267 y1 = affine._m22 * fy1 + affine._dy; |
|
1268 x2 = affine._m11 * fx2 + affine._dx; |
|
1269 y2 = affine._m22 * fy2 + affine._dy; |
|
1270 break; |
|
1271 case TxRotate: |
|
1272 case TxShear: |
|
1273 case TxProject: |
|
1274 x1 = affine._m11 * fx1 + affine._m21 * fy1 + affine._dx; |
|
1275 y1 = affine._m12 * fx1 + affine._m22 * fy1 + affine._dy; |
|
1276 x2 = affine._m11 * fx2 + affine._m21 * fy2 + affine._dx; |
|
1277 y2 = affine._m12 * fx2 + affine._m22 * fy2 + affine._dy; |
|
1278 if (t == TxProject) { |
|
1279 qreal w = 1./(m_13 * fx1 + m_23 * fy1 + m_33); |
|
1280 x1 *= w; |
|
1281 y1 *= w; |
|
1282 w = 1./(m_13 * fx2 + m_23 * fy2 + m_33); |
|
1283 x2 *= w; |
|
1284 y2 *= w; |
|
1285 } |
|
1286 } |
|
1287 return QLineF(x1, y1, x2, y2); |
|
1288 } |
|
1289 |
|
1290 static QPolygonF mapProjective(const QTransform &transform, const QPolygonF &poly) |
|
1291 { |
|
1292 if (poly.size() == 0) |
|
1293 return poly; |
|
1294 |
|
1295 if (poly.size() == 1) |
|
1296 return QPolygonF() << transform.map(poly.at(0)); |
|
1297 |
|
1298 QPainterPath path; |
|
1299 path.addPolygon(poly); |
|
1300 |
|
1301 path = transform.map(path); |
|
1302 |
|
1303 QPolygonF result; |
|
1304 for (int i = 0; i < path.elementCount(); ++i) |
|
1305 result << path.elementAt(i); |
|
1306 return result; |
|
1307 } |
|
1308 |
|
1309 |
|
1310 /*! |
|
1311 \fn QPolygonF operator *(const QPolygonF &polygon, const QTransform &matrix) |
|
1312 \since 4.3 |
|
1313 \relates QTransform |
|
1314 |
|
1315 This is the same as \a{matrix}.map(\a{polygon}). |
|
1316 |
|
1317 \sa QTransform::map() |
|
1318 */ |
|
1319 |
|
1320 /*! |
|
1321 \fn QPolygon operator*(const QPolygon &polygon, const QTransform &matrix) |
|
1322 \relates QTransform |
|
1323 |
|
1324 This is the same as \a{matrix}.map(\a{polygon}). |
|
1325 |
|
1326 \sa QTransform::map() |
|
1327 */ |
|
1328 |
|
1329 /*! |
|
1330 \fn QPolygonF QTransform::map(const QPolygonF &polygon) const |
|
1331 \overload |
|
1332 |
|
1333 Creates and returns a QPolygonF object that is a copy of the given |
|
1334 \a polygon, mapped into the coordinate system defined by this |
|
1335 matrix. |
|
1336 */ |
|
1337 QPolygonF QTransform::map(const QPolygonF &a) const |
|
1338 { |
|
1339 TransformationType t = inline_type(); |
|
1340 if (t <= TxTranslate) |
|
1341 return a.translated(affine._dx, affine._dy); |
|
1342 |
|
1343 if (t >= QTransform::TxProject) |
|
1344 return mapProjective(*this, a); |
|
1345 |
|
1346 int size = a.size(); |
|
1347 int i; |
|
1348 QPolygonF p(size); |
|
1349 const QPointF *da = a.constData(); |
|
1350 QPointF *dp = p.data(); |
|
1351 |
|
1352 for(i = 0; i < size; ++i) { |
|
1353 MAP(da[i].xp, da[i].yp, dp[i].xp, dp[i].yp); |
|
1354 } |
|
1355 return p; |
|
1356 } |
|
1357 |
|
1358 /*! |
|
1359 \fn QPolygon QTransform::map(const QPolygon &polygon) const |
|
1360 \overload |
|
1361 |
|
1362 Creates and returns a QPolygon object that is a copy of the given |
|
1363 \a polygon, mapped into the coordinate system defined by this |
|
1364 matrix. Note that the transformed coordinates are rounded to the |
|
1365 nearest integer. |
|
1366 */ |
|
1367 QPolygon QTransform::map(const QPolygon &a) const |
|
1368 { |
|
1369 TransformationType t = inline_type(); |
|
1370 if (t <= TxTranslate) |
|
1371 return a.translated(qRound(affine._dx), qRound(affine._dy)); |
|
1372 |
|
1373 if (t >= QTransform::TxProject) |
|
1374 return mapProjective(*this, QPolygonF(a)).toPolygon(); |
|
1375 |
|
1376 int size = a.size(); |
|
1377 int i; |
|
1378 QPolygon p(size); |
|
1379 const QPoint *da = a.constData(); |
|
1380 QPoint *dp = p.data(); |
|
1381 |
|
1382 for(i = 0; i < size; ++i) { |
|
1383 qreal nx = 0, ny = 0; |
|
1384 MAP(da[i].xp, da[i].yp, nx, ny); |
|
1385 dp[i].xp = qRound(nx); |
|
1386 dp[i].yp = qRound(ny); |
|
1387 } |
|
1388 return p; |
|
1389 } |
|
1390 |
|
1391 /*! |
|
1392 \fn QRegion operator*(const QRegion ®ion, const QTransform &matrix) |
|
1393 \relates QTransform |
|
1394 |
|
1395 This is the same as \a{matrix}.map(\a{region}). |
|
1396 |
|
1397 \sa QTransform::map() |
|
1398 */ |
|
1399 |
|
1400 extern QPainterPath qt_regionToPath(const QRegion ®ion); |
|
1401 |
|
1402 /*! |
|
1403 \fn QRegion QTransform::map(const QRegion ®ion) const |
|
1404 \overload |
|
1405 |
|
1406 Creates and returns a QRegion object that is a copy of the given |
|
1407 \a region, mapped into the coordinate system defined by this matrix. |
|
1408 |
|
1409 Calling this method can be rather expensive if rotations or |
|
1410 shearing are used. |
|
1411 */ |
|
1412 QRegion QTransform::map(const QRegion &r) const |
|
1413 { |
|
1414 TransformationType t = inline_type(); |
|
1415 if (t == TxNone) |
|
1416 return r; |
|
1417 |
|
1418 if (t == TxTranslate) { |
|
1419 QRegion copy(r); |
|
1420 copy.translate(qRound(affine._dx), qRound(affine._dy)); |
|
1421 return copy; |
|
1422 } |
|
1423 |
|
1424 if (t == TxScale && r.numRects() == 1) |
|
1425 return QRegion(mapRect(r.boundingRect())); |
|
1426 |
|
1427 QPainterPath p = map(qt_regionToPath(r)); |
|
1428 return p.toFillPolygon(QTransform()).toPolygon(); |
|
1429 } |
|
1430 |
|
1431 struct QHomogeneousCoordinate |
|
1432 { |
|
1433 qreal x; |
|
1434 qreal y; |
|
1435 qreal w; |
|
1436 |
|
1437 QHomogeneousCoordinate() {} |
|
1438 QHomogeneousCoordinate(qreal x_, qreal y_, qreal w_) : x(x_), y(y_), w(w_) {} |
|
1439 |
|
1440 const QPointF toPoint() const { |
|
1441 qreal iw = 1. / w; |
|
1442 return QPointF(x * iw, y * iw); |
|
1443 } |
|
1444 }; |
|
1445 |
|
1446 static inline QHomogeneousCoordinate mapHomogeneous(const QTransform &transform, const QPointF &p) |
|
1447 { |
|
1448 QHomogeneousCoordinate c; |
|
1449 c.x = transform.m11() * p.x() + transform.m21() * p.y() + transform.m31(); |
|
1450 c.y = transform.m12() * p.x() + transform.m22() * p.y() + transform.m32(); |
|
1451 c.w = transform.m13() * p.x() + transform.m23() * p.y() + transform.m33(); |
|
1452 return c; |
|
1453 } |
|
1454 |
|
1455 static inline bool lineTo_clipped(QPainterPath &path, const QTransform &transform, const QPointF &a, const QPointF &b, |
|
1456 bool needsMoveTo, bool needsLineTo = true) |
|
1457 { |
|
1458 QHomogeneousCoordinate ha = mapHomogeneous(transform, a); |
|
1459 QHomogeneousCoordinate hb = mapHomogeneous(transform, b); |
|
1460 |
|
1461 if (ha.w < Q_NEAR_CLIP && hb.w < Q_NEAR_CLIP) |
|
1462 return false; |
|
1463 |
|
1464 if (hb.w < Q_NEAR_CLIP) { |
|
1465 const qreal t = (Q_NEAR_CLIP - hb.w) / (ha.w - hb.w); |
|
1466 |
|
1467 hb.x += (ha.x - hb.x) * t; |
|
1468 hb.y += (ha.y - hb.y) * t; |
|
1469 hb.w = qreal(Q_NEAR_CLIP); |
|
1470 } else if (ha.w < Q_NEAR_CLIP) { |
|
1471 const qreal t = (Q_NEAR_CLIP - ha.w) / (hb.w - ha.w); |
|
1472 |
|
1473 ha.x += (hb.x - ha.x) * t; |
|
1474 ha.y += (hb.y - ha.y) * t; |
|
1475 ha.w = qreal(Q_NEAR_CLIP); |
|
1476 |
|
1477 const QPointF p = ha.toPoint(); |
|
1478 if (needsMoveTo) { |
|
1479 path.moveTo(p); |
|
1480 needsMoveTo = false; |
|
1481 } else { |
|
1482 path.lineTo(p); |
|
1483 } |
|
1484 } |
|
1485 |
|
1486 if (needsMoveTo) |
|
1487 path.moveTo(ha.toPoint()); |
|
1488 |
|
1489 if (needsLineTo) |
|
1490 path.lineTo(hb.toPoint()); |
|
1491 |
|
1492 return true; |
|
1493 } |
|
1494 |
|
1495 static inline bool cubicTo_clipped(QPainterPath &path, const QTransform &transform, const QPointF &a, const QPointF &b, const QPointF &c, const QPointF &d, bool needsMoveTo) |
|
1496 { |
|
1497 // Convert projective xformed curves to line |
|
1498 // segments so they can be transformed more accurately |
|
1499 QPolygonF segment = QBezier::fromPoints(a, b, c, d).toPolygon(); |
|
1500 |
|
1501 for (int i = 0; i < segment.size() - 1; ++i) |
|
1502 if (lineTo_clipped(path, transform, segment.at(i), segment.at(i+1), needsMoveTo)) |
|
1503 needsMoveTo = false; |
|
1504 |
|
1505 return !needsMoveTo; |
|
1506 } |
|
1507 |
|
1508 static QPainterPath mapProjective(const QTransform &transform, const QPainterPath &path) |
|
1509 { |
|
1510 QPainterPath result; |
|
1511 |
|
1512 QPointF last; |
|
1513 QPointF lastMoveTo; |
|
1514 bool needsMoveTo = true; |
|
1515 for (int i = 0; i < path.elementCount(); ++i) { |
|
1516 switch (path.elementAt(i).type) { |
|
1517 case QPainterPath::MoveToElement: |
|
1518 if (i > 0 && lastMoveTo != last) |
|
1519 lineTo_clipped(result, transform, last, lastMoveTo, needsMoveTo); |
|
1520 |
|
1521 lastMoveTo = path.elementAt(i); |
|
1522 last = path.elementAt(i); |
|
1523 needsMoveTo = true; |
|
1524 break; |
|
1525 case QPainterPath::LineToElement: |
|
1526 if (lineTo_clipped(result, transform, last, path.elementAt(i), needsMoveTo)) |
|
1527 needsMoveTo = false; |
|
1528 last = path.elementAt(i); |
|
1529 break; |
|
1530 case QPainterPath::CurveToElement: |
|
1531 if (cubicTo_clipped(result, transform, last, path.elementAt(i), path.elementAt(i+1), path.elementAt(i+2), needsMoveTo)) |
|
1532 needsMoveTo = false; |
|
1533 i += 2; |
|
1534 last = path.elementAt(i); |
|
1535 break; |
|
1536 default: |
|
1537 Q_ASSERT(false); |
|
1538 } |
|
1539 } |
|
1540 |
|
1541 if (path.elementCount() > 0 && lastMoveTo != last) |
|
1542 lineTo_clipped(result, transform, last, lastMoveTo, needsMoveTo, false); |
|
1543 |
|
1544 result.setFillRule(path.fillRule()); |
|
1545 return result; |
|
1546 } |
|
1547 |
|
1548 /*! |
|
1549 \fn QPainterPath operator *(const QPainterPath &path, const QTransform &matrix) |
|
1550 \since 4.3 |
|
1551 \relates QTransform |
|
1552 |
|
1553 This is the same as \a{matrix}.map(\a{path}). |
|
1554 |
|
1555 \sa QTransform::map() |
|
1556 */ |
|
1557 |
|
1558 /*! |
|
1559 \overload |
|
1560 |
|
1561 Creates and returns a QPainterPath object that is a copy of the |
|
1562 given \a path, mapped into the coordinate system defined by this |
|
1563 matrix. |
|
1564 */ |
|
1565 QPainterPath QTransform::map(const QPainterPath &path) const |
|
1566 { |
|
1567 TransformationType t = inline_type(); |
|
1568 if (t == TxNone || path.isEmpty()) |
|
1569 return path; |
|
1570 |
|
1571 if (t >= TxProject) |
|
1572 return mapProjective(*this, path); |
|
1573 |
|
1574 QPainterPath copy = path; |
|
1575 |
|
1576 if (t == TxTranslate) { |
|
1577 copy.translate(affine._dx, affine._dy); |
|
1578 } else { |
|
1579 copy.detach(); |
|
1580 // Full xform |
|
1581 for (int i=0; i<path.elementCount(); ++i) { |
|
1582 QPainterPath::Element &e = copy.d_ptr->elements[i]; |
|
1583 MAP(e.x, e.y, e.x, e.y); |
|
1584 } |
|
1585 } |
|
1586 |
|
1587 return copy; |
|
1588 } |
|
1589 |
|
1590 /*! |
|
1591 \fn QPolygon QTransform::mapToPolygon(const QRect &rectangle) const |
|
1592 |
|
1593 Creates and returns a QPolygon representation of the given \a |
|
1594 rectangle, mapped into the coordinate system defined by this |
|
1595 matrix. |
|
1596 |
|
1597 The rectangle's coordinates are transformed using the following |
|
1598 formulas: |
|
1599 |
|
1600 \snippet doc/src/snippets/code/src_gui_painting_qtransform.cpp 1 |
|
1601 |
|
1602 Polygons and rectangles behave slightly differently when |
|
1603 transformed (due to integer rounding), so |
|
1604 \c{matrix.map(QPolygon(rectangle))} is not always the same as |
|
1605 \c{matrix.mapToPolygon(rectangle)}. |
|
1606 |
|
1607 \sa mapRect(), {QTransform#Basic Matrix Operations}{Basic Matrix |
|
1608 Operations} |
|
1609 */ |
|
1610 QPolygon QTransform::mapToPolygon(const QRect &rect) const |
|
1611 { |
|
1612 TransformationType t = inline_type(); |
|
1613 |
|
1614 QPolygon a(4); |
|
1615 qreal x[4] = { 0, 0, 0, 0 }, y[4] = { 0, 0, 0, 0 }; |
|
1616 if (t <= TxScale) { |
|
1617 x[0] = affine._m11*rect.x() + affine._dx; |
|
1618 y[0] = affine._m22*rect.y() + affine._dy; |
|
1619 qreal w = affine._m11*rect.width(); |
|
1620 qreal h = affine._m22*rect.height(); |
|
1621 if (w < 0) { |
|
1622 w = -w; |
|
1623 x[0] -= w; |
|
1624 } |
|
1625 if (h < 0) { |
|
1626 h = -h; |
|
1627 y[0] -= h; |
|
1628 } |
|
1629 x[1] = x[0]+w; |
|
1630 x[2] = x[1]; |
|
1631 x[3] = x[0]; |
|
1632 y[1] = y[0]; |
|
1633 y[2] = y[0]+h; |
|
1634 y[3] = y[2]; |
|
1635 } else { |
|
1636 qreal right = rect.x() + rect.width(); |
|
1637 qreal bottom = rect.y() + rect.height(); |
|
1638 MAP(rect.x(), rect.y(), x[0], y[0]); |
|
1639 MAP(right, rect.y(), x[1], y[1]); |
|
1640 MAP(right, bottom, x[2], y[2]); |
|
1641 MAP(rect.x(), bottom, x[3], y[3]); |
|
1642 } |
|
1643 |
|
1644 // all coordinates are correctly, tranform to a pointarray |
|
1645 // (rounding to the next integer) |
|
1646 a.setPoints(4, qRound(x[0]), qRound(y[0]), |
|
1647 qRound(x[1]), qRound(y[1]), |
|
1648 qRound(x[2]), qRound(y[2]), |
|
1649 qRound(x[3]), qRound(y[3])); |
|
1650 return a; |
|
1651 } |
|
1652 |
|
1653 /*! |
|
1654 Creates a transformation matrix, \a trans, that maps a unit square |
|
1655 to a four-sided polygon, \a quad. Returns true if the transformation |
|
1656 is constructed or false if such a transformation does not exist. |
|
1657 |
|
1658 \sa quadToSquare(), quadToQuad() |
|
1659 */ |
|
1660 bool QTransform::squareToQuad(const QPolygonF &quad, QTransform &trans) |
|
1661 { |
|
1662 if (quad.count() != 4) |
|
1663 return false; |
|
1664 |
|
1665 qreal dx0 = quad[0].x(); |
|
1666 qreal dx1 = quad[1].x(); |
|
1667 qreal dx2 = quad[2].x(); |
|
1668 qreal dx3 = quad[3].x(); |
|
1669 |
|
1670 qreal dy0 = quad[0].y(); |
|
1671 qreal dy1 = quad[1].y(); |
|
1672 qreal dy2 = quad[2].y(); |
|
1673 qreal dy3 = quad[3].y(); |
|
1674 |
|
1675 double ax = dx0 - dx1 + dx2 - dx3; |
|
1676 double ay = dy0 - dy1 + dy2 - dy3; |
|
1677 |
|
1678 if (!ax && !ay) { //afine transform |
|
1679 trans.setMatrix(dx1 - dx0, dy1 - dy0, 0, |
|
1680 dx2 - dx1, dy2 - dy1, 0, |
|
1681 dx0, dy0, 1); |
|
1682 } else { |
|
1683 double ax1 = dx1 - dx2; |
|
1684 double ax2 = dx3 - dx2; |
|
1685 double ay1 = dy1 - dy2; |
|
1686 double ay2 = dy3 - dy2; |
|
1687 |
|
1688 /*determinants */ |
|
1689 double gtop = ax * ay2 - ax2 * ay; |
|
1690 double htop = ax1 * ay - ax * ay1; |
|
1691 double bottom = ax1 * ay2 - ax2 * ay1; |
|
1692 |
|
1693 double a, b, c, d, e, f, g, h; /*i is always 1*/ |
|
1694 |
|
1695 if (!bottom) |
|
1696 return false; |
|
1697 |
|
1698 g = gtop/bottom; |
|
1699 h = htop/bottom; |
|
1700 |
|
1701 a = dx1 - dx0 + g * dx1; |
|
1702 b = dx3 - dx0 + h * dx3; |
|
1703 c = dx0; |
|
1704 d = dy1 - dy0 + g * dy1; |
|
1705 e = dy3 - dy0 + h * dy3; |
|
1706 f = dy0; |
|
1707 |
|
1708 trans.setMatrix(a, d, g, |
|
1709 b, e, h, |
|
1710 c, f, 1.0); |
|
1711 } |
|
1712 |
|
1713 return true; |
|
1714 } |
|
1715 |
|
1716 /*! |
|
1717 \fn bool QTransform::quadToSquare(const QPolygonF &quad, QTransform &trans) |
|
1718 |
|
1719 Creates a transformation matrix, \a trans, that maps a four-sided polygon, |
|
1720 \a quad, to a unit square. Returns true if the transformation is constructed |
|
1721 or false if such a transformation does not exist. |
|
1722 |
|
1723 \sa squareToQuad(), quadToQuad() |
|
1724 */ |
|
1725 bool QTransform::quadToSquare(const QPolygonF &quad, QTransform &trans) |
|
1726 { |
|
1727 if (!squareToQuad(quad, trans)) |
|
1728 return false; |
|
1729 |
|
1730 bool invertible = false; |
|
1731 trans = trans.inverted(&invertible); |
|
1732 |
|
1733 return invertible; |
|
1734 } |
|
1735 |
|
1736 /*! |
|
1737 Creates a transformation matrix, \a trans, that maps a four-sided |
|
1738 polygon, \a one, to another four-sided polygon, \a two. |
|
1739 Returns true if the transformation is possible; otherwise returns |
|
1740 false. |
|
1741 |
|
1742 This is a convenience method combining quadToSquare() and |
|
1743 squareToQuad() methods. It allows the input quad to be |
|
1744 transformed into any other quad. |
|
1745 |
|
1746 \sa squareToQuad(), quadToSquare() |
|
1747 */ |
|
1748 bool QTransform::quadToQuad(const QPolygonF &one, |
|
1749 const QPolygonF &two, |
|
1750 QTransform &trans) |
|
1751 { |
|
1752 QTransform stq; |
|
1753 if (!quadToSquare(one, trans)) |
|
1754 return false; |
|
1755 if (!squareToQuad(two, stq)) |
|
1756 return false; |
|
1757 trans *= stq; |
|
1758 //qDebug()<<"Final = "<<trans; |
|
1759 return true; |
|
1760 } |
|
1761 |
|
1762 /*! |
|
1763 Sets the matrix elements to the specified values, \a m11, |
|
1764 \a m12, \a m13 \a m21, \a m22, \a m23 \a m31, \a m32 and |
|
1765 \a m33. Note that this function replaces the previous values. |
|
1766 QTransform provides the translate(), rotate(), scale() and shear() |
|
1767 convenience functions to manipulate the various matrix elements |
|
1768 based on the currently defined coordinate system. |
|
1769 |
|
1770 \sa QTransform() |
|
1771 */ |
|
1772 |
|
1773 void QTransform::setMatrix(qreal m11, qreal m12, qreal m13, |
|
1774 qreal m21, qreal m22, qreal m23, |
|
1775 qreal m31, qreal m32, qreal m33) |
|
1776 { |
|
1777 affine._m11 = m11; affine._m12 = m12; m_13 = m13; |
|
1778 affine._m21 = m21; affine._m22 = m22; m_23 = m23; |
|
1779 affine._dx = m31; affine._dy = m32; m_33 = m33; |
|
1780 m_type = TxNone; |
|
1781 m_dirty = TxProject; |
|
1782 } |
|
1783 |
|
1784 static inline bool needsPerspectiveClipping(const QRectF &rect, const QTransform &transform) |
|
1785 { |
|
1786 const qreal wx = qMin(transform.m13() * rect.left(), transform.m13() * rect.right()); |
|
1787 const qreal wy = qMin(transform.m23() * rect.top(), transform.m23() * rect.bottom()); |
|
1788 |
|
1789 return wx + wy + transform.m33() < Q_NEAR_CLIP; |
|
1790 } |
|
1791 |
|
1792 QRect QTransform::mapRect(const QRect &rect) const |
|
1793 { |
|
1794 TransformationType t = inline_type(); |
|
1795 if (t <= TxTranslate) |
|
1796 return rect.translated(qRound(affine._dx), qRound(affine._dy)); |
|
1797 |
|
1798 if (t <= TxScale) { |
|
1799 int x = qRound(affine._m11*rect.x() + affine._dx); |
|
1800 int y = qRound(affine._m22*rect.y() + affine._dy); |
|
1801 int w = qRound(affine._m11*rect.width()); |
|
1802 int h = qRound(affine._m22*rect.height()); |
|
1803 if (w < 0) { |
|
1804 w = -w; |
|
1805 x -= w; |
|
1806 } |
|
1807 if (h < 0) { |
|
1808 h = -h; |
|
1809 y -= h; |
|
1810 } |
|
1811 return QRect(x, y, w, h); |
|
1812 } else if (t < TxProject || !needsPerspectiveClipping(rect, *this)) { |
|
1813 // see mapToPolygon for explanations of the algorithm. |
|
1814 qreal x = 0, y = 0; |
|
1815 MAP(rect.left(), rect.top(), x, y); |
|
1816 qreal xmin = x; |
|
1817 qreal ymin = y; |
|
1818 qreal xmax = x; |
|
1819 qreal ymax = y; |
|
1820 MAP(rect.right() + 1, rect.top(), x, y); |
|
1821 xmin = qMin(xmin, x); |
|
1822 ymin = qMin(ymin, y); |
|
1823 xmax = qMax(xmax, x); |
|
1824 ymax = qMax(ymax, y); |
|
1825 MAP(rect.right() + 1, rect.bottom() + 1, x, y); |
|
1826 xmin = qMin(xmin, x); |
|
1827 ymin = qMin(ymin, y); |
|
1828 xmax = qMax(xmax, x); |
|
1829 ymax = qMax(ymax, y); |
|
1830 MAP(rect.left(), rect.bottom() + 1, x, y); |
|
1831 xmin = qMin(xmin, x); |
|
1832 ymin = qMin(ymin, y); |
|
1833 xmax = qMax(xmax, x); |
|
1834 ymax = qMax(ymax, y); |
|
1835 return QRect(qRound(xmin), qRound(ymin), qRound(xmax)-qRound(xmin), qRound(ymax)-qRound(ymin)); |
|
1836 } else { |
|
1837 QPainterPath path; |
|
1838 path.addRect(rect); |
|
1839 return map(path).boundingRect().toRect(); |
|
1840 } |
|
1841 } |
|
1842 |
|
1843 /*! |
|
1844 \fn QRectF QTransform::mapRect(const QRectF &rectangle) const |
|
1845 |
|
1846 Creates and returns a QRectF object that is a copy of the given \a |
|
1847 rectangle, mapped into the coordinate system defined by this |
|
1848 matrix. |
|
1849 |
|
1850 The rectangle's coordinates are transformed using the following |
|
1851 formulas: |
|
1852 |
|
1853 \snippet doc/src/snippets/code/src_gui_painting_qtransform.cpp 2 |
|
1854 |
|
1855 If rotation or shearing has been specified, this function returns |
|
1856 the \e bounding rectangle. To retrieve the exact region the given |
|
1857 \a rectangle maps to, use the mapToPolygon() function instead. |
|
1858 |
|
1859 \sa mapToPolygon(), {QTransform#Basic Matrix Operations}{Basic Matrix |
|
1860 Operations} |
|
1861 */ |
|
1862 QRectF QTransform::mapRect(const QRectF &rect) const |
|
1863 { |
|
1864 TransformationType t = inline_type(); |
|
1865 if (t <= TxTranslate) |
|
1866 return rect.translated(affine._dx, affine._dy); |
|
1867 |
|
1868 if (t <= TxScale) { |
|
1869 qreal x = affine._m11*rect.x() + affine._dx; |
|
1870 qreal y = affine._m22*rect.y() + affine._dy; |
|
1871 qreal w = affine._m11*rect.width(); |
|
1872 qreal h = affine._m22*rect.height(); |
|
1873 if (w < 0) { |
|
1874 w = -w; |
|
1875 x -= w; |
|
1876 } |
|
1877 if (h < 0) { |
|
1878 h = -h; |
|
1879 y -= h; |
|
1880 } |
|
1881 return QRectF(x, y, w, h); |
|
1882 } else if (t < TxProject || !needsPerspectiveClipping(rect, *this)) { |
|
1883 qreal x = 0, y = 0; |
|
1884 MAP(rect.x(), rect.y(), x, y); |
|
1885 qreal xmin = x; |
|
1886 qreal ymin = y; |
|
1887 qreal xmax = x; |
|
1888 qreal ymax = y; |
|
1889 MAP(rect.x() + rect.width(), rect.y(), x, y); |
|
1890 xmin = qMin(xmin, x); |
|
1891 ymin = qMin(ymin, y); |
|
1892 xmax = qMax(xmax, x); |
|
1893 ymax = qMax(ymax, y); |
|
1894 MAP(rect.x() + rect.width(), rect.y() + rect.height(), x, y); |
|
1895 xmin = qMin(xmin, x); |
|
1896 ymin = qMin(ymin, y); |
|
1897 xmax = qMax(xmax, x); |
|
1898 ymax = qMax(ymax, y); |
|
1899 MAP(rect.x(), rect.y() + rect.height(), x, y); |
|
1900 xmin = qMin(xmin, x); |
|
1901 ymin = qMin(ymin, y); |
|
1902 xmax = qMax(xmax, x); |
|
1903 ymax = qMax(ymax, y); |
|
1904 return QRectF(xmin, ymin, xmax-xmin, ymax - ymin); |
|
1905 } else { |
|
1906 QPainterPath path; |
|
1907 path.addRect(rect); |
|
1908 return map(path).boundingRect(); |
|
1909 } |
|
1910 } |
|
1911 |
|
1912 /*! |
|
1913 \fn QRect QTransform::mapRect(const QRect &rectangle) const |
|
1914 \overload |
|
1915 |
|
1916 Creates and returns a QRect object that is a copy of the given \a |
|
1917 rectangle, mapped into the coordinate system defined by this |
|
1918 matrix. Note that the transformed coordinates are rounded to the |
|
1919 nearest integer. |
|
1920 */ |
|
1921 |
|
1922 /*! |
|
1923 Maps the given coordinates \a x and \a y into the coordinate |
|
1924 system defined by this matrix. The resulting values are put in *\a |
|
1925 tx and *\a ty, respectively. |
|
1926 |
|
1927 The coordinates are transformed using the following formulas: |
|
1928 |
|
1929 \snippet doc/src/snippets/code/src_gui_painting_qtransform.cpp 3 |
|
1930 |
|
1931 The point (x, y) is the original point, and (x', y') is the |
|
1932 transformed point. |
|
1933 |
|
1934 \sa {QTransform#Basic Matrix Operations}{Basic Matrix Operations} |
|
1935 */ |
|
1936 void QTransform::map(qreal x, qreal y, qreal *tx, qreal *ty) const |
|
1937 { |
|
1938 TransformationType t = inline_type(); |
|
1939 MAP(x, y, *tx, *ty); |
|
1940 } |
|
1941 |
|
1942 /*! |
|
1943 \overload |
|
1944 |
|
1945 Maps the given coordinates \a x and \a y into the coordinate |
|
1946 system defined by this matrix. The resulting values are put in *\a |
|
1947 tx and *\a ty, respectively. Note that the transformed coordinates |
|
1948 are rounded to the nearest integer. |
|
1949 */ |
|
1950 void QTransform::map(int x, int y, int *tx, int *ty) const |
|
1951 { |
|
1952 TransformationType t = inline_type(); |
|
1953 qreal fx = 0, fy = 0; |
|
1954 MAP(x, y, fx, fy); |
|
1955 *tx = qRound(fx); |
|
1956 *ty = qRound(fy); |
|
1957 } |
|
1958 |
|
1959 /*! |
|
1960 Returns the QTransform as an affine matrix. |
|
1961 |
|
1962 \warning If a perspective transformation has been specified, |
|
1963 then the conversion will cause loss of data. |
|
1964 */ |
|
1965 const QMatrix &QTransform::toAffine() const |
|
1966 { |
|
1967 return affine; |
|
1968 } |
|
1969 |
|
1970 /*! |
|
1971 Returns the transformation type of this matrix. |
|
1972 |
|
1973 The transformation type is the highest enumeration value |
|
1974 capturing all of the matrix's transformations. For example, |
|
1975 if the matrix both scales and shears, the type would be \c TxShear, |
|
1976 because \c TxShear has a higher enumeration value than \c TxScale. |
|
1977 |
|
1978 Knowing the transformation type of a matrix is useful for optimization: |
|
1979 you can often handle specific types more optimally than handling |
|
1980 the generic case. |
|
1981 */ |
|
1982 QTransform::TransformationType QTransform::type() const |
|
1983 { |
|
1984 if(m_dirty == TxNone || m_dirty < m_type) |
|
1985 return static_cast<TransformationType>(m_type); |
|
1986 |
|
1987 switch (static_cast<TransformationType>(m_dirty)) { |
|
1988 case TxProject: |
|
1989 if (!qFuzzyIsNull(m_13) || !qFuzzyIsNull(m_23) || !qFuzzyIsNull(m_33 - 1)) { |
|
1990 m_type = TxProject; |
|
1991 break; |
|
1992 } |
|
1993 case TxShear: |
|
1994 case TxRotate: |
|
1995 if (!qFuzzyIsNull(affine._m12) || !qFuzzyIsNull(affine._m21)) { |
|
1996 const qreal dot = affine._m11 * affine._m12 + affine._m21 * affine._m22; |
|
1997 if (qFuzzyIsNull(dot)) |
|
1998 m_type = TxRotate; |
|
1999 else |
|
2000 m_type = TxShear; |
|
2001 break; |
|
2002 } |
|
2003 case TxScale: |
|
2004 if (!qFuzzyIsNull(affine._m11 - 1) || !qFuzzyIsNull(affine._m22 - 1)) { |
|
2005 m_type = TxScale; |
|
2006 break; |
|
2007 } |
|
2008 case TxTranslate: |
|
2009 if (!qFuzzyIsNull(affine._dx) || !qFuzzyIsNull(affine._dy)) { |
|
2010 m_type = TxTranslate; |
|
2011 break; |
|
2012 } |
|
2013 case TxNone: |
|
2014 m_type = TxNone; |
|
2015 break; |
|
2016 } |
|
2017 |
|
2018 m_dirty = TxNone; |
|
2019 return static_cast<TransformationType>(m_type); |
|
2020 } |
|
2021 |
|
2022 /*! |
|
2023 |
|
2024 Returns the transform as a QVariant. |
|
2025 */ |
|
2026 QTransform::operator QVariant() const |
|
2027 { |
|
2028 return QVariant(QVariant::Transform, this); |
|
2029 } |
|
2030 |
|
2031 |
|
2032 /*! |
|
2033 \fn bool QTransform::isInvertible() const |
|
2034 |
|
2035 Returns true if the matrix is invertible, otherwise returns false. |
|
2036 |
|
2037 \sa inverted() |
|
2038 */ |
|
2039 |
|
2040 /*! |
|
2041 \fn qreal QTransform::det() const |
|
2042 \obsolete |
|
2043 |
|
2044 Returns the matrix's determinant. Use determinant() instead. |
|
2045 */ |
|
2046 |
|
2047 |
|
2048 /*! |
|
2049 \fn qreal QTransform::m11() const |
|
2050 |
|
2051 Returns the horizontal scaling factor. |
|
2052 |
|
2053 \sa scale(), {QTransform#Basic Matrix Operations}{Basic Matrix |
|
2054 Operations} |
|
2055 */ |
|
2056 |
|
2057 /*! |
|
2058 \fn qreal QTransform::m12() const |
|
2059 |
|
2060 Returns the vertical shearing factor. |
|
2061 |
|
2062 \sa shear(), {QTransform#Basic Matrix Operations}{Basic Matrix |
|
2063 Operations} |
|
2064 */ |
|
2065 |
|
2066 /*! |
|
2067 \fn qreal QTransform::m21() const |
|
2068 |
|
2069 Returns the horizontal shearing factor. |
|
2070 |
|
2071 \sa shear(), {QTransform#Basic Matrix Operations}{Basic Matrix |
|
2072 Operations} |
|
2073 */ |
|
2074 |
|
2075 /*! |
|
2076 \fn qreal QTransform::m22() const |
|
2077 |
|
2078 Returns the vertical scaling factor. |
|
2079 |
|
2080 \sa scale(), {QTransform#Basic Matrix Operations}{Basic Matrix |
|
2081 Operations} |
|
2082 */ |
|
2083 |
|
2084 /*! |
|
2085 \fn qreal QTransform::dx() const |
|
2086 |
|
2087 Returns the horizontal translation factor. |
|
2088 |
|
2089 \sa m31(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
|
2090 Operations} |
|
2091 */ |
|
2092 |
|
2093 /*! |
|
2094 \fn qreal QTransform::dy() const |
|
2095 |
|
2096 Returns the vertical translation factor. |
|
2097 |
|
2098 \sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
|
2099 Operations} |
|
2100 */ |
|
2101 |
|
2102 |
|
2103 /*! |
|
2104 \fn qreal QTransform::m13() const |
|
2105 |
|
2106 Returns the horizontal projection factor. |
|
2107 |
|
2108 \sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
|
2109 Operations} |
|
2110 */ |
|
2111 |
|
2112 |
|
2113 /*! |
|
2114 \fn qreal QTransform::m23() const |
|
2115 |
|
2116 Returns the vertical projection factor. |
|
2117 |
|
2118 \sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
|
2119 Operations} |
|
2120 */ |
|
2121 |
|
2122 /*! |
|
2123 \fn qreal QTransform::m31() const |
|
2124 |
|
2125 Returns the horizontal translation factor. |
|
2126 |
|
2127 \sa dx(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
|
2128 Operations} |
|
2129 */ |
|
2130 |
|
2131 /*! |
|
2132 \fn qreal QTransform::m32() const |
|
2133 |
|
2134 Returns the vertical translation factor. |
|
2135 |
|
2136 \sa dy(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
|
2137 Operations} |
|
2138 */ |
|
2139 |
|
2140 /*! |
|
2141 \fn qreal QTransform::m33() const |
|
2142 |
|
2143 Returns the division factor. |
|
2144 |
|
2145 \sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
|
2146 Operations} |
|
2147 */ |
|
2148 |
|
2149 /*! |
|
2150 \fn qreal QTransform::determinant() const |
|
2151 |
|
2152 Returns the matrix's determinant. |
|
2153 */ |
|
2154 |
|
2155 /*! |
|
2156 \fn bool QTransform::isIdentity() const |
|
2157 |
|
2158 Returns true if the matrix is the identity matrix, otherwise |
|
2159 returns false. |
|
2160 |
|
2161 \sa reset() |
|
2162 */ |
|
2163 |
|
2164 /*! |
|
2165 \fn bool QTransform::isAffine() const |
|
2166 |
|
2167 Returns true if the matrix represent an affine transformation, |
|
2168 otherwise returns false. |
|
2169 */ |
|
2170 |
|
2171 /*! |
|
2172 \fn bool QTransform::isScaling() const |
|
2173 |
|
2174 Returns true if the matrix represents a scaling |
|
2175 transformation, otherwise returns false. |
|
2176 |
|
2177 \sa reset() |
|
2178 */ |
|
2179 |
|
2180 /*! |
|
2181 \fn bool QTransform::isRotating() const |
|
2182 |
|
2183 Returns true if the matrix represents some kind of a |
|
2184 rotating transformation, otherwise returns false. |
|
2185 |
|
2186 \sa reset() |
|
2187 */ |
|
2188 |
|
2189 /*! |
|
2190 \fn bool QTransform::isTranslating() const |
|
2191 |
|
2192 Returns true if the matrix represents a translating |
|
2193 transformation, otherwise returns false. |
|
2194 |
|
2195 \sa reset() |
|
2196 */ |
|
2197 |
|
2198 /*! |
|
2199 \fn bool qFuzzyCompare(const QTransform& t1, const QTransform& t2) |
|
2200 |
|
2201 \relates QTransform |
|
2202 \since 4.6 |
|
2203 |
|
2204 Returns true if \a t1 and \a t2 are equal, allowing for a small |
|
2205 fuzziness factor for floating-point comparisons; false otherwise. |
|
2206 */ |
|
2207 |
|
2208 |
|
2209 // returns true if the transform is uniformly scaling |
|
2210 // (same scale in x and y direction) |
|
2211 // scale is set to the max of x and y scaling factors |
|
2212 Q_GUI_EXPORT |
|
2213 bool qt_scaleForTransform(const QTransform &transform, qreal *scale) |
|
2214 { |
|
2215 const QTransform::TransformationType type = transform.type(); |
|
2216 if (type <= QTransform::TxTranslate) { |
|
2217 *scale = 1; |
|
2218 return true; |
|
2219 } else if (type == QTransform::TxScale) { |
|
2220 const qreal xScale = qAbs(transform.m11()); |
|
2221 const qreal yScale = qAbs(transform.m22()); |
|
2222 *scale = qMax(xScale, yScale); |
|
2223 return qFuzzyCompare(xScale, yScale); |
|
2224 } |
|
2225 |
|
2226 const qreal xScale = transform.m11() * transform.m11() |
|
2227 + transform.m21() * transform.m21(); |
|
2228 const qreal yScale = transform.m12() * transform.m12() |
|
2229 + transform.m22() * transform.m22(); |
|
2230 *scale = qSqrt(qMax(xScale, yScale)); |
|
2231 return type == QTransform::TxRotate && qFuzzyCompare(xScale, yScale); |
|
2232 } |
|
2233 |
|
2234 QT_END_NAMESPACE |